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Coastal sedimentary processes
Physics of particle-laden fresh water flows above salted water:

River delta of Irrawady, Myanmar (ESA)
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Variables of interest
We consider an incompressible fluid with the following properties:

1 A constant viscosity µ (resistance to deformation by shear stress).
2 A constant density ρ (mass per unit volume).

In 2D, we are interested in solving the following physical fields:

1 The fluid velocity uuu(xxx , t) =

ux (xxx , t)
uy (xxx , t)

0



2 The fluid vorticity ωωω(xxx , t) =

 0
0

ωz(xxx , t)


3 The internal pressure of the fluid P(xxx , t).

We define those variables on a spatial domain Ω with boundaries ∂Ω.
i.e. ∀ xxx = (x , y) ∈ Ω which is a rectangular domain [0, Lx ]× [0, Ly ].
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Variables of interest
We consider an incompressible fluid with the following properties:

1 A constant viscosity µ (resistance to deformation by shear stress).
2 A constant density ρ (mass per unit volume).

In 3D, we are interested in solving the following physical fields:

1 The fluid velocity uuu(xxx , t) =

ux (xxx , t)
uy (xxx , t)
uz(xxx , t)



2 The fluid vorticity ωωω(xxx , t) =

ωx (xxx , t)
ωy (xxx , t)
ωz(xxx , t)


3 The internal pressure of the fluid P(xxx , t).

We define those variables on a spatial domain Ω with boundaries ∂Ω.
i.e. ∀ xxx = (x , y , z) ∈ Ω which is a cuboid domain [0, Lx ]× [0, Ly ]× [0, Lz ].
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Variables of interest - velocity and vorticity

The vorticity is a pseudovector field that describes the local spinning
motion of the fluid near some point in the whole domain.

You can directly compute the vorticity ωωω by taking the curl of the
velocity uuu. Given ∇ =

(
∂

∂x ,
∂

∂y ,
∂

∂z

)
we have ωωω = ∇× uuu.

In 3D, this is 3-components vector field (like the velocity):
ωx

ωy

ωz

 =


∂

∂x
∂

∂y
∂
∂z

 ×


ux
uy
uz

 =


∂uz
∂y −

∂uy
∂z

∂ux
∂z −

∂uz
∂x

∂uy
∂x −

∂ux
∂y
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Variables of interest - velocity and vorticity

The vorticity is a pseudovector field that describes the local spinning
motion of the fluid near some point in the whole domain.

You can directly compute the vorticity ωωω by taking the curl of the
velocity uuu. Given ∇ =

(
∂

∂x ,
∂

∂y ,
∂

∂z

)
we have ωωω = ∇× uuu.

In 2D, this is a scalar field (only one component):

Example of 2D velocity and vorticity fields
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Navier-Stokes - conservation of mass
The first equation relates to the conservation of the mass:

∂ρ

∂t +∇ · (ρuuu) = 0

With a constant density ρ this equations reduce to:

∇ · uuu = ∂ux
∂x + ∂uy

∂y + ∂uz
∂z = 0

You can see the divergence as a scalar field representing the quantity
of a vector field’s source at each point:
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Navier-Stokes - conservation of momentum
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Navier-Stokes - velocity-vorticity formulation

What if we do not want to solve the pressure field ?
∇ · uuu = 0

ρ

[
∂uuu
∂t + (uuu · ∇)uuu

]
= µ∆uuu −∇∇∇P + ρggg

Just apply the curl operator to the second equation:
∇ · uuu = 0

∇×
(
ρ

[
∂uuu
∂t + (uuu · ∇)uuu

])
= ∇ × (µ∆uuu −∇∇∇P + ρggg)

In 3D (uuu,ωωω) formulation has 6 unknowns vs. 4 for (uuu,P) formulation.
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Navier-Stokes - velocity-vorticity formulation

What if we do not want to solve the pressure field ?
∇ · uuu = 0

ρ

[
∂uuu
∂t + (uuu · ∇)uuu

]
= µ∆uuu −∇∇∇P + ρggg

Just apply the curl operator to the second equation:
∇ · uuu = 0

ρ

[
∂ωωω

∂t + (uuu · ∇)ωωω − (ωωω · ∇)uuu
]

= µ∆ωωω − 0 + ρ(∇× ggg)

In 3D (uuu,ωωω) formulation has 6 unknowns vs. 4 for (uuu,P) formulation.
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Target hardware
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Global view of a compute cluster
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A single compute node

Each compute node has its own processor(s) and memory banks:

On conventional architectures you can have 1 to 8 sockets (CPUs).
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Zoom on a dual socket compute node
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Dual socket motherboard
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Accelerators and coprocessors - server grade GPUs

Nvidia Tesla P100 AMD Firepro W9100

This range of products is dedicated to the double precision compute tasks
(no graphical tasks). Here FP64 = 1/2 FP32.
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Accelerators and coprocessors - gaming GPUs

Nvidia Titan Xp AMD RX Vega 64

This range of products is dedicated to the single precision compute tasks
(mostly graphical tasks). Here FP64 = α FP32 where α ∈ [1/32, 1/4].
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Accelerators and coprocessors - Intel’s response to GPUs

MIC (Many Integrated Core) coprocessor - Xeon-Phi (72 cores)

Those cards have been discontinued by Intel since 2017.
Here FP64 = 1/2 FP32.
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CPU vs GPU

CPU GPU

VRAM

More compute cores (but operating in groups) Less cache per core
Embedded memory
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Advantage of coprocessors
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Programming models for coprocessors
OpenCL (Open Computing Language): Framework for writing
programs that execute across heterogeneous hardware (CPU, GPU,
MIC, FPGA, DSP). This is not synonym of performance portability

1 OpenCL 1.x: Based on C99 (2008).
2 OpenCL 2.x: Based on a subset of C++14 (2013).

CUDA (Compute Unified Device Architecture): Nvidia only (C++14)
OpenMP (Open Multi-Processing): Since v.4.0 (2013) you can
offload compute task to accelerators (pragma based approach).
OpenACC (Open Accelerators): Like OpenMP but for accelerators.

Intel AMD Nvidia
CPU MIC CPU GPU GPU

OpenCL 2.1 1.2 2.0 1.2 1.2
CUDA - - - - 10.0
OpenMP gcc/icc gcc/icc gcc gcc gcc
OpenACC - - - - gcc/pgcc
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The HySoP library
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Discretization of the variables

Variable are discretized on regular cartesian grids (with ghosts):

Ω = [0, Lx ]× [0, Ly ]× [0, Lz ]

N = Nx × Ny × Nz

dxdxdx = [dx , dy , dz ] =
[

Lx
(Nx − 1) ,

Ly
(Ny − 1) ,

Lz
(Nz − 1)

]
Fijk(t) = F (idx , jdy , kdz , t)

∀(i , j , k) ∈ J0,Nx − 1K× J0,Ny − 1K× J0,Nz − 1K

This allows us to use efficient methods like:
1 Finite differences
2 Spectral methods
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Discretization of the variables

All the variable are distributed on the compute nodes:

One variable may have many different topologies depending on
operator constraints.

We use MPI (Message Passing Interface) for inter node
communication.
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Building a problem
After specifying variables, the user builds a DAG of operators:

Advection
in : u, ω, S
out : ω, S

CustomOp
in : C, S

out : −(RsS + C)

Curl
in : −(RsS + C)

out : −rot(RsS + C)

CustomOp
in : u

out : u′ = u− Vpez

Diffusion
in : S
out : S

Source-Sink
in : ω,−rot(RsS + C)

out : ω

Diffusion
in : u′, C
out : C

Poisson
in : ω
out : u

AdaptDt
in : u, ω
out : dt

Diffusion
in : ω
out : ω

CoutSout

dt

uout

ωout

ωin, Sinuin

Stretching
in : u, ω
out : ω

Diffusion
in : C
out : C

Cout

Topo FFT Topo Ghosts

S

ω

u, ω

u

ω

−(RsS + C)

ω

ω

−rot(RsS + C

u

Advection
in : u′, C
out : C

C

C

u′ S

u

Cin
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HySoP backends

The user has to choose operators and the backend it will run on:

HySoP
Python User Interface

C++
(JIT)

OpenCL
(JIT)

HySoP
C++
sources

HySoP
Fortran
sources

Numpy

CUDA
(JIT)

HySoP C++ Library
(cpp2hysop.so)

HySoP Fortran Library
(f2hysop.so)

Numba pyOpenCL pyCUDA

Python BackendFortran Backend OpenCL BackendC++ Backend CUDA Backend

f2hysop cpp2hysop

Numpy C API

HySoP
Python
bytecode

HySoP
OpenCL
sources

HySoP
OpenCL

Code Generator

POCL

F2PY SWIG

Currently we have Python, C++, Fortran and OpenCL support.
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Operator splitting
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Operator splitting

The idea is to split the Navier-Stokes equations in (uuu,ωωω) formulation.
Independant operators are easier to implement, test and debug !

∂ωωω

∂t + (uuu · ∇)ωωω = (ωωω · ∇)uuu + ν∆ωωω +∇× ggg

We split the momentum equations as the following:
1 Transport: ∂ω

ωω

∂t + (uuu · ∇)ωωω = 0

2 Stretching: ∂ω
ωω

∂t = (ωωω · ∇)uuu [this term only appears in 3D]

3 Diffusion: ∂ω
ωω

∂t = ν∆ωωω

4 Ext. forces: ∂ω
ωω

∂t = ∇× ggg
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Operator splitting
The idea is to split the Navier-Stokes equations in (uuu,ωωω) formulation.
Independant operators are easier to implement, test and debug !

∂ωωω

∂t + (uuu · ∇)ωωω = (ωωω · ∇)uuu + ν∆ωωω +∇× ggg

Each discretized operator forces the timestep to be small enough:
1 Transport: ∆tadv <

LCFL
|ωωω|∞

with LCFL < 1.

2 Stretching: ∆tstr <
RK

maxi
∑
j

∣∣∣∣∂uuui
∂xxx j

∣∣∣∣
3 Diffusion: ∆tdiff <

RK
ν

dx2

4 Ext. forces: ∆tfext depends on the force field
∆t = min(∆tadv ,∆tstr ,∆tdiff ,∆tfext).
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What happens if those conditions are not met ?
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What happens if those conditions are not met ?
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What about immersed boundaries ?

We just introduce a penalization term to correct the velocity:
∂u(xxx , t)
∂t = χs(xxx)λ(uuud − uuu(xxx , t))

χs(xxx) =
{
1 if xxx ∈ S
0 if xxx /∈ S
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Remeshed particles methods

Directional operator splitting example: advection
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Remeshed particles methods - directional splitting

2D advection-remesh using directional splitting (1st axis)
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Remeshed particles methods - directional splitting

2D advection-remesh using directional splitting (2nd axis)
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Remeshing kernels as obtained with [3]
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Generalized directional splitting (Strang 2nd order)
Generalized directional splitting to all splittable operators.
Between each directional advection-remesh step the data is
transposed to ensure contiguous memory accesses on the accelerator:

Processing of the x-axis (dt/2)

Processing of the y-axis (dt/2)

Processing of the z-axis (dt)

Second order

Transposition XY

Transposition XZ

directional splitting

Processing of the y-axis (dt/2)

Processing of the x-axis (dt/2)

Transposition XZ

Transposition XY
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Generalized directional splitting (Strang 2nd order)
Generalized directional splitting to all splittable operators.
Between each directional advection-remesh step the data is
transposed to ensure contiguous memory accesses on the accelerator:

Advection (Runge-Kutta)

Remesh (interpolation kernel)

Other operators split on the grid

Processing of a single axis

Transposition

— stretching : (ω · ∇)u
— diffusion : ∆ω
— ext. forces : rot[F (ρi, · · ·)]
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Example of directional splitting for the stretching

Conservative form: ∂ω
ωω

∂t = div [uuu ⊗ωωω] = uuu (∇ ·ωωω)︸ ︷︷ ︸
0

+(ωωω · ∇)uuu.

∂ωωω

∂t = div [uuu ⊗ωωω] = div


uuuxωωωx uuuxωωωy uuuxωωωz

uuuyωωωx uuuyωωωy uuuyωωωz

uuuzωωωx uuuzωωωy uuuzωωωz


Directional splitting (3 operators → 9 operators)

1 Splitting axe x : ∂ωωω

∂t = ∂

∂x [ωωωxuuu]

2 Splitting axe y : ∂ωωω

∂t = ∂

∂y [ωωωyuuu]

3 Splitting axe z : ∂ωωω

∂t = ∂

∂z [ωωωzuuu]
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DAG of operators
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Performances obtained for the stretching operator
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Conclusion and perspectives
Conclusion

OpenCL is an interesting tool for HPC on heterogeneous compute
platforms.
However you have to ensure the portability of the performances.
Splitting the Navier-Stokes in many subproblems is the key for
simplicity and a natural framework for task parallelisation.
You can already compute nice simulations with a single compute
node (even without GPU).

Future developments

Implement the multi-scale approach and MPI FFT-based solvers
(global transposition of memory accross all processes).
Full in-core simulation on multiple GPUs should enable high spatial
resolution simulations.
Full release of HySoP v2.0 to the public in 2019.
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Thanks for your attention !
Any questions ?
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