
Numerical modelling and High Performance Computing
for sediment flows: Part one

Jean-Baptiste Keck

Thursday 22nd November, 2018

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 1 / 41

Table of contents

1 Introduction

2 How to build a high performance fluid solver ?
Navier-Stokes equations
Target hardware
The HySoP library
Operator splitting

3 Conclusion and perspectives

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 2 / 41

Coastal sedimentary processes
Physics of particle-laden fresh water flows above salted water:

River delta of Irrawady, Myanmar (ESA)

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 3 / 41

How to build a high performance fluid solver ?

1 Introduction

2 How to build a high performance fluid solver ?
Navier-Stokes equations
Target hardware
The HySoP library
Operator splitting

3 Conclusion and perspectives

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 4 / 41

Navier-Stokes equations

1 Introduction

2 How to build a high performance fluid solver ?
Navier-Stokes equations
Target hardware
The HySoP library
Operator splitting

3 Conclusion and perspectives

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 5 / 41

Variables of interest
We consider an incompressible fluid with the following properties:

1 A constant viscosity µ (resistance to deformation by shear stress).
2 A constant density ρ (mass per unit volume).

In 2D, we are interested in solving the following physical fields:

1 The fluid velocity uuu(xxx , t) =

ux (xxx , t)
uy (xxx , t)

0

2 The fluid vorticity ωωω(xxx , t) =

 0
0

ωz(xxx , t)

3 The internal pressure of the fluid P(xxx , t).

We define those variables on a spatial domain Ω with boundaries ∂Ω.
i.e. ∀ xxx = (x , y) ∈ Ω which is a rectangular domain [0, Lx]× [0, Ly].

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 6 / 41

Variables of interest
We consider an incompressible fluid with the following properties:

1 A constant viscosity µ (resistance to deformation by shear stress).
2 A constant density ρ (mass per unit volume).

In 3D, we are interested in solving the following physical fields:

1 The fluid velocity uuu(xxx , t) =

ux (xxx , t)
uy (xxx , t)
uz(xxx , t)

2 The fluid vorticity ωωω(xxx , t) =

ωx (xxx , t)
ωy (xxx , t)
ωz(xxx , t)

3 The internal pressure of the fluid P(xxx , t).

We define those variables on a spatial domain Ω with boundaries ∂Ω.
i.e. ∀ xxx = (x , y , z) ∈ Ω which is a cuboid domain [0, Lx]× [0, Ly]× [0, Lz].

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 6 / 41

Variables of interest - velocity and vorticity

The vorticity is a pseudovector field that describes the local spinning
motion of the fluid near some point in the whole domain.

You can directly compute the vorticity ωωω by taking the curl of the
velocity uuu. Given ∇ =

(
∂

∂x ,
∂

∂y ,
∂

∂z

)
we have ωωω = ∇× uuu.

In 3D, this is 3-components vector field (like the velocity):
ωx

ωy

ωz

 =

∂

∂x
∂

∂y
∂
∂z

 ×

ux
uy
uz

 =

∂uz
∂y −

∂uy
∂z

∂ux
∂z −

∂uz
∂x

∂uy
∂x −

∂ux
∂y

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 7 / 41

Variables of interest - velocity and vorticity

The vorticity is a pseudovector field that describes the local spinning
motion of the fluid near some point in the whole domain.

You can directly compute the vorticity ωωω by taking the curl of the
velocity uuu. Given ∇ =

(
∂

∂x ,
∂

∂y ,
∂

∂z

)
we have ωωω = ∇× uuu.

In 2D, this is a scalar field (only one component):
ωx

ωy

ωz

 =

∂

∂x
∂

∂y

�
�∂

∂z

 ×

ux
uy
��uz

 =

�
�∂uz

∂y −�
�∂uy

∂z

�
�∂ux

∂z −�
�∂uz

∂x
∂uy
∂x −

∂ux
∂y

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 7 / 41

Variables of interest - velocity and vorticity

The vorticity is a pseudovector field that describes the local spinning
motion of the fluid near some point in the whole domain.

You can directly compute the vorticity ωωω by taking the curl of the
velocity uuu. Given ∇ =

(
∂

∂x ,
∂

∂y ,
∂

∂z

)
we have ωωω = ∇× uuu.

In 2D, this is a scalar field (only one component):
ωx

ωy

ωz

 =

∂

∂x
∂

∂y
0

 ×

ux
uy
0

 =

0
0

∂uy
∂x −

∂ux
∂y

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 7 / 41

Variables of interest - velocity and vorticity

The vorticity is a pseudovector field that describes the local spinning
motion of the fluid near some point in the whole domain.

You can directly compute the vorticity ωωω by taking the curl of the
velocity uuu. Given ∇ =

(
∂

∂x ,
∂

∂y ,
∂

∂z

)
we have ωωω = ∇× uuu.

In 2D, this is a scalar field (only one component):

Example of 2D velocity and vorticity fields

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 7 / 41

Navier-Stokes - conservation of mass
The first equation relates to the conservation of the mass:

∂ρ

∂t +∇ · (ρuuu) = 0

With a constant density ρ this equations reduce to:

∇ · uuu = ∂ux
∂x + ∂uy

∂y + ∂uz
∂z = 0

You can see the divergence as a scalar field representing the quantity
of a vector field’s source at each point:

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 8 / 41

Navier-Stokes - conservation of momentum

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 9 / 41

Navier-Stokes - velocity-vorticity formulation

What if we do not want to solve the pressure field ?
∇ · uuu = 0

ρ

[
∂uuu
∂t + (uuu · ∇)uuu

]
= µ∆uuu −∇∇∇P + ρggg

Just apply the curl operator to the second equation:
∇ · uuu = 0

∇×
(
ρ

[
∂uuu
∂t + (uuu · ∇)uuu

])
= ∇ × (µ∆uuu −∇∇∇P + ρggg)

In 3D (uuu,ωωω) formulation has 6 unknowns vs. 4 for (uuu,P) formulation.

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 10 / 41

Navier-Stokes - velocity-vorticity formulation

What if we do not want to solve the pressure field ?
∇ · uuu = 0

ρ

[
∂uuu
∂t + (uuu · ∇)uuu

]
= µ∆uuu −∇∇∇P + ρggg

Just apply the curl operator to the second equation:
∇ · uuu = 0

ρ

[
∂ωωω

∂t + (uuu · ∇)ωωω − (ωωω · ∇)uuu
]

= µ∆ωωω − 0 + ρ(∇× ggg)

In 3D (uuu,ωωω) formulation has 6 unknowns vs. 4 for (uuu,P) formulation.

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 10 / 41

Navier-Stokes - velocity-vorticity formulation

What if we do not want to solve the pressure field ?
∇ · uuu = 0

ρ

[
∂uuu
∂t + (uuu · ∇)uuu

]
= µ∆uuu −∇∇∇P + ρggg

Just apply the curl operator to the second equation:
∇ · uuu = 0

∂ωωω

∂t + (uuu · ∇)ωωω − (ωωω · ∇)uuu = µ

ρ
∆ωωω +∇× ggg

In 3D (uuu,ωωω) formulation has 6 unknowns vs. 4 for (uuu,P) formulation.

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 10 / 41

Navier-Stokes - velocity-vorticity formulation

What if we do not want to solve the pressure field ?
∇ · uuu = 0

ρ

[
∂uuu
∂t + (uuu · ∇)uuu

]
= µ∆uuu −∇∇∇P + ρggg

Just apply the curl operator to the second equation:
∇ · uuu = 0

∂ωωω

∂t + (uuu · ∇)ωωω − (ωωω · ∇)uuu = ν∆ωωω +∇× ggg

In 3D (uuu,ωωω) formulation has 6 unknowns vs. 4 for (uuu,P) formulation.

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 10 / 41

Navier-Stokes - velocity-vorticity formulation

What if we do not want to solve the pressure field ?
∇ · uuu = 0

ρ

[
∂uuu
∂t + (uuu · ∇)uuu

]
= µ∆uuu −∇∇∇P + ρggg

Just apply the curl operator to the second equation:
∇ · uuu = 0

∂ωωω

∂t + (uuu · ∇)ωωω = (ωωω · ∇)uuu + ν∆ωωω +∇× ggg

In 3D (uuu,ωωω) formulation has 6 unknowns vs. 4 for (uuu,P) formulation.

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 10 / 41

Target hardware

1 Introduction

2 How to build a high performance fluid solver ?
Navier-Stokes equations
Target hardware
The HySoP library
Operator splitting

3 Conclusion and perspectives

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 11 / 41

Global view of a compute cluster

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 12 / 41

A single compute node

Each compute node has its own processor(s) and memory banks:

On conventional architectures you can have 1 to 8 sockets (CPUs).

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 13 / 41

Zoom on a dual socket compute node

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 14 / 41

Dual socket motherboard

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 15 / 41

Accelerators and coprocessors - server grade GPUs

Nvidia Tesla P100 AMD Firepro W9100

This range of products is dedicated to the double precision compute tasks
(no graphical tasks). Here FP64 = 1/2 FP32.

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 16 / 41

Accelerators and coprocessors - gaming GPUs

Nvidia Titan Xp AMD RX Vega 64

This range of products is dedicated to the single precision compute tasks
(mostly graphical tasks). Here FP64 = α FP32 where α ∈ [1/32, 1/4].

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 17 / 41

Accelerators and coprocessors - Intel’s response to GPUs

MIC (Many Integrated Core) coprocessor - Xeon-Phi (72 cores)

Those cards have been discontinued by Intel since 2017.
Here FP64 = 1/2 FP32.

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 18 / 41

CPU vs GPU

CPU GPU

VRAM

More compute cores (but operating in groups) Less cache per core
Embedded memory

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 19 / 41

Advantage of coprocessors

10
2

10
3

10
4

10
5

 2008 2010 2012 2014 2016 2018

HD 3870

HD 4870
HD 5870

HD 6970 HD 6970 HD 7970

HD 8970

FirePro W9100

FirePro S9150

X5482 X5492 W5590

X5680
X5690

E5-2690 E5-2697 v2

E5-2699 v3

E5-2699 v4

E5-2699 v4
8180M

Tesla C1060

Tesla C1060

Tesla C2050
Tesla M2090

Tesla K20

Tesla K20X

Tesla K40

Tesla P100

Tesla V100

Epyc 7601

D
o
lla

rs
 p

a
r

T
F

L
O

P
/s

 (
D

P
)

Date de sortie

CPU Intel

CPU AMD

GPU Nvidia

GPU AMD

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 20 / 41

Programming models for coprocessors
OpenCL (Open Computing Language): Framework for writing
programs that execute across heterogeneous hardware (CPU, GPU,
MIC, FPGA, DSP). This is not synonym of performance portability

1 OpenCL 1.x: Based on C99 (2008).
2 OpenCL 2.x: Based on a subset of C++14 (2013).

CUDA (Compute Unified Device Architecture): Nvidia only (C++14)
OpenMP (Open Multi-Processing): Since v.4.0 (2013) you can
offload compute task to accelerators (pragma based approach).
OpenACC (Open Accelerators): Like OpenMP but for accelerators.

Intel AMD Nvidia
CPU MIC CPU GPU GPU

OpenCL 2.1 1.2 2.0 1.2 1.2
CUDA - - - - 10.0
OpenMP gcc/icc gcc/icc gcc gcc gcc
OpenACC - - - - gcc/pgcc

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 21 / 41

The HySoP library

1 Introduction

2 How to build a high performance fluid solver ?
Navier-Stokes equations
Target hardware
The HySoP library
Operator splitting

3 Conclusion and perspectives

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 22 / 41

Discretization of the variables

Variable are discretized on regular cartesian grids (with ghosts):

Ω = [0, Lx]× [0, Ly]× [0, Lz]

N = Nx × Ny × Nz

dxdxdx = [dx , dy , dz] =
[

Lx
(Nx − 1) ,

Ly
(Ny − 1) ,

Lz
(Nz − 1)

]
Fijk(t) = F (idx , jdy , kdz , t)

∀(i , j , k) ∈ J0,Nx − 1K× J0,Ny − 1K× J0,Nz − 1K

This allows us to use efficient methods like:
1 Finite differences
2 Spectral methods

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 23 / 41

Discretization of the variables

Variable are discretized on regular cartesian grids (with ghosts):

This allows us to use efficient methods like:
1 Finite differences
2 Spectral methods

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 23 / 41

Discretization of the variables

All the variable are distributed on the compute nodes:

One variable may have many different topologies depending on
operator constraints.

We use MPI (Message Passing Interface) for inter node
communication.

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 24 / 41

Building a problem
After specifying variables, the user builds a DAG of operators:

Advection
in : u, ω, S
out : ω, S

CustomOp
in : C, S

out : −(RsS + C)

Curl
in : −(RsS + C)

out : −rot(RsS + C)

CustomOp
in : u

out : u′ = u− Vpez

Diffusion
in : S
out : S

Source-Sink
in : ω,−rot(RsS + C)

out : ω

Diffusion
in : u′, C
out : C

Poisson
in : ω
out : u

AdaptDt
in : u, ω
out : dt

Diffusion
in : ω
out : ω

CoutSout

dt

uout

ωout

ωin, Sinuin

Stretching
in : u, ω
out : ω

Diffusion
in : C
out : C

Cout

Topo FFT Topo Ghosts

S

ω

u, ω

u

ω

−(RsS + C)

ω

ω

−rot(RsS + C

u

Advection
in : u′, C
out : C

C

C

u′ S

u

Cin

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 25 / 41

HySoP backends

The user has to choose operators and the backend it will run on:

HySoP
Python User Interface

C++
(JIT)

OpenCL
(JIT)

HySoP
C++
sources

HySoP
Fortran
sources

Numpy

CUDA
(JIT)

HySoP C++ Library
(cpp2hysop.so)

HySoP Fortran Library
(f2hysop.so)

Numba pyOpenCL pyCUDA

Python BackendFortran Backend OpenCL BackendC++ Backend CUDA Backend

f2hysop cpp2hysop

Numpy C API

HySoP
Python
bytecode

HySoP
OpenCL
sources

HySoP
OpenCL

Code Generator

POCL

F2PY SWIG

Currently we have Python, C++, Fortran and OpenCL support.

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 26 / 41

Operator splitting

1 Introduction

2 How to build a high performance fluid solver ?
Navier-Stokes equations
Target hardware
The HySoP library
Operator splitting

3 Conclusion and perspectives

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 27 / 41

Operator splitting

The idea is to split the Navier-Stokes equations in (uuu,ωωω) formulation.
Independant operators are easier to implement, test and debug !

∂ωωω

∂t + (uuu · ∇)ωωω = (ωωω · ∇)uuu + ν∆ωωω +∇× ggg

We split the momentum equations as the following:
1 Transport: ∂ω

ωω

∂t + (uuu · ∇)ωωω = 0

2 Stretching: ∂ω
ωω

∂t = (ωωω · ∇)uuu [this term only appears in 3D]

3 Diffusion: ∂ω
ωω

∂t = ν∆ωωω

4 Ext. forces: ∂ω
ωω

∂t = ∇× ggg

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 28 / 41

Operator splitting
The idea is to split the Navier-Stokes equations in (uuu,ωωω) formulation.
Independant operators are easier to implement, test and debug !

∂ωωω

∂t + (uuu · ∇)ωωω = (ωωω · ∇)uuu + ν∆ωωω +∇× ggg

Each discretized operator forces the timestep to be small enough:
1 Transport: ∆tadv <

LCFL
|ωωω|∞

with LCFL < 1.

2 Stretching: ∆tstr <
RK

maxi
∑
j

∣∣∣∣∂uuui
∂xxx j

∣∣∣∣
3 Diffusion: ∆tdiff <

RK
ν

dx2

4 Ext. forces: ∆tfext depends on the force field
∆t = min(∆tadv ,∆tstr ,∆tdiff ,∆tfext).
Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 28 / 41

What happens if those conditions are not met ?

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 29 / 41

What happens if those conditions are not met ?

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 29 / 41

What about immersed boundaries ?

We just introduce a penalization term to correct the velocity:
∂u(xxx , t)
∂t = χs(xxx)λ(uuud − uuu(xxx , t))

χs(xxx) =
{
1 if xxx ∈ S
0 if xxx /∈ S

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 30 / 41

Remeshed particles methods

Directional operator splitting example: advection

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 31 / 41

Remeshed particles methods - directional splitting

2D advection-remesh using directional splitting (1st axis)

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 32 / 41

Remeshed particles methods - directional splitting

2D advection-remesh using directional splitting (2nd axis)

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 33 / 41

Remeshing kernels as obtained with [3]

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 34 / 41

Generalized directional splitting (Strang 2nd order)
Generalized directional splitting to all splittable operators.
Between each directional advection-remesh step the data is
transposed to ensure contiguous memory accesses on the accelerator:

Processing of the x-axis (dt/2)

Processing of the y-axis (dt/2)

Processing of the z-axis (dt)

Second order

Transposition XY

Transposition XZ

directional splitting

Processing of the y-axis (dt/2)

Processing of the x-axis (dt/2)

Transposition XZ

Transposition XY

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 35 / 41

Generalized directional splitting (Strang 2nd order)
Generalized directional splitting to all splittable operators.
Between each directional advection-remesh step the data is
transposed to ensure contiguous memory accesses on the accelerator:

Advection (Runge-Kutta)

Remesh (interpolation kernel)

Other operators split on the grid

Processing of a single axis

Transposition

— stretching : (ω · ∇)u
— diffusion : ∆ω
— ext. forces : rot[F (ρi, · · ·)]

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 36 / 41

Example of directional splitting for the stretching

Conservative form: ∂ω
ωω

∂t = div [uuu ⊗ωωω] = uuu (∇ ·ωωω)︸ ︷︷ ︸
0

+(ωωω · ∇)uuu.

∂ωωω

∂t = div [uuu ⊗ωωω] = div

uuuxωωωx uuuxωωωy uuuxωωωz

uuuyωωωx uuuyωωωy uuuyωωωz

uuuzωωωx uuuzωωωy uuuzωωωz

Directional splitting (3 operators → 9 operators)

1 Splitting axe x : ∂ωωω

∂t = ∂

∂x [ωωωxuuu]

2 Splitting axe y : ∂ωωω

∂t = ∂

∂y [ωωωyuuu]

3 Splitting axe z : ∂ωωω

∂t = ∂

∂z [ωωωzuuu]

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 37 / 41

DAG of operators

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 38 / 41

Performances obtained for the stretching operator

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 39 / 41

Conclusion and perspectives
Conclusion

OpenCL is an interesting tool for HPC on heterogeneous compute
platforms.
However you have to ensure the portability of the performances.
Splitting the Navier-Stokes in many subproblems is the key for
simplicity and a natural framework for task parallelisation.
You can already compute nice simulations with a single compute
node (even without GPU).

Future developments

Implement the multi-scale approach and MPI FFT-based solvers
(global transposition of memory accross all processes).
Full in-core simulation on multiple GPUs should enable high spatial
resolution simulations.
Full release of HySoP v2.0 to the public in 2019.

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 40 / 41

References

[1] G. Balarac et al. “Multi-scale Problems, High Performance
Computing and Hybrid Numerical Methods”. In: Mathematics for
Industry (2014), pp. 245–255.

[2] P. Burns and E. Meiburg. “Sediment-laden fresh water above salt
water: nonlinear simulations”. In: Journal of Fluid Mechanics 762
(Nov. 2014), pp. 156–195.

[3] Georges-Henri Cottet et al. “High order Semi-Lagrangian particle
methods for transport equations: numerical analysis and
implementation issues”. In: ESAIM: Mathematical Modelling and
Numerical Analysis 48.4 (July 2014), pp. 1029–1060.

Thanks for your attention !
Any questions ?

Jean-Baptiste Keck Numerical modelling for sediment flows Thursday 22nd November, 2018 41 / 41

	Introduction
	How to build a high performance fluid solver ?
	Navier-Stokes equations
	Target hardware
	The HySoP library
	Operator splitting

	Conclusion and perspectives
	References

