# Identifying coherent homogeneous regions for extreme rainfall.

#### Philomène Le Gall Supervised by Clémentine Prieur, Anne-Catherine Favre and Philippe Naveau

#### 28 January 2020





28 January 2020

1/26

Philomène Le Gall

PhD students seminar

### Table of contents

#### Introduction

- 2 Regional Frequency Analysis
- 3 A threshold-free partitionning
- 4 Application to Switzerland

3

- E

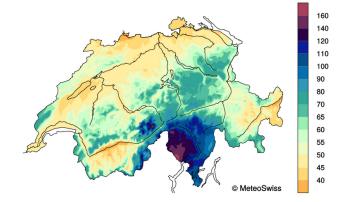
-

• • • • • • • • •

### (Flash) flood

- More common natural disaster
- Caused by heavy precipitation (extreme rainfall)




Flood in SW of France

Ex : Maximum observed 412mm/day vs 900mm/year in Grenoble

Image: A matrix of the second seco

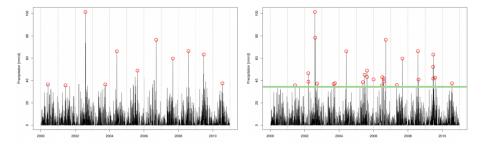
### Defining coherent regions for extreme rainfall

2-year return level (mm), year



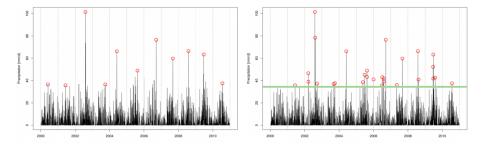
What about longer return period ?

|  | Le Gall |
|--|---------|
|  |         |


∃ ► < ∃ ►</p> 28 January 2020 4 / 26

3

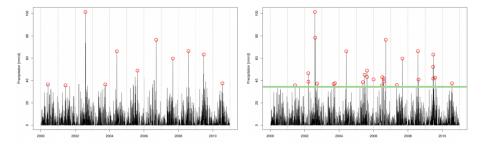
Image: A matrix and a matrix


#### Regional Frequency Analysis Hosking et al. [1985]

**Goal**: Estimating **return levels** of unobserved events. Two approaches: **GEV**( $\mu, \sigma, \xi$ ) (maxima) or **GPD**( $\sigma, \xi$ ) (threshold)



#### Regional Frequency Analysis Hosking et al. [1985]


**Goal**: Estimating return levels of unobserved events. Two approaches:  $\text{GEV}(\mu, \sigma, \xi)$  (maxima) or  $\text{GPD}(\sigma, \xi)$  (threshold)



Problems: Asymptotic distributions + lack of information

#### Regional Frequency Analysis Hosking et al. [1985]

**Goal**: Estimating **return levels** of unobserved events. Two approaches: **GEV**( $\mu, \sigma, \xi$ ) (maxima) or **GPD**( $\sigma, \xi$ ) (threshold)



Problems: Asymptotic distributions + lack of information

Solution: Regional Frequency Analysis (RFA)

Philomène Le Gall

### Table of contents

#### Introduction

- 2 Regional Frequency Analysis
  - Region of Influence
  - Partitionning
  - Limits
- 3 A threshold-free partitionning
- 4 Application to Switzerland

Image: A matrix

Hypothesis: Region is homogeneous iff

$$Y_i = \sigma_i Y, \quad \sigma_i \ge 0$$

e.g  $Y \sim GEV, GPD, ...$ 

**Goal**: Gathering weather stations with same distribution (except scale factor).

Hypothesis: Region is homogeneous iff

$$Y_i = \sigma_i Y, \quad \sigma_i \ge 0$$

e.g  $Y \sim GEV, GPD, ...$ 

**Goal**: Gathering weather stations with same distribution (except scale factor).

Methods available: Region of Influence (RoI) vs partitioning.

イロト イ理ト イヨト イヨト ヨー シタウ

Four steps:

| Philomène Le Gall |
|-------------------|
|-------------------|

э

590

・ロト ・ 四ト ・ ヨト ・ ヨト

Four steps:

Choosing "relevant" site-characteristics (e.g elevation, coordinates...)

3

Four steps:

- Choosing "relevant" site-characteristics (e.g elevation, coordinates...)
- ② Gathering stations by their characteristics

Image: A matrix of the second seco

Four steps:

- Choosing "relevant" site-characteristics (e.g elevation, coordinates...)
- ② Gathering stations by their characteristics
- Homogeneity tests

Image: A matrix of the second seco

Four steps:

- Choosing "relevant" site-characteristics (e.g elevation, coordinates...)
- ② Gathering stations by their characteristics
- Homogeneity tests
- Homogeneous region = Rol (Region of Influence)

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Four steps:

- Choosing "relevant" site-characteristics (e.g elevation, coordinates...)
- ② Gathering stations by their characteristics
- Homogeneity tests
- Homogeneous region = Rol (Region of Influence)



Principle: Gathering stations by measured precipitation.

Four steps:

Principle: Gathering stations by measured precipitation.

Four steps:

GPD approach/model

Principle: Gathering stations by measured precipitation.

Four steps:

• GPD approach/model  $\rightarrow$  values > 98% quantile

**Principle**: Gathering stations by measured precipitation.

Four steps:

- GPD approach/model  $\rightarrow$  values > 98% quantile
- Set imating first PWM :  $\mathbb{E}[XF(X)]$

**Principle**: Gathering stations by measured precipitation.

Four steps:

- GPD approach/model  $\rightarrow$  values > 98% quantile
- Set imating first PWM :  $\mathbb{E}[XF(X)]$
- Olustering at-site PWM values

イロト イヨト イヨト

**Principle**: Gathering stations by measured precipitation. Four steps:

- GPD approach/model  $\rightarrow$  values > 98% quantile
- **2** Estimating first PWM :  $\mathbb{E}[XF(X)]$
- Olustering at-site PWM values
- Homogeneous regions = Clusters

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

**Principle**: Gathering stations by measured precipitation. Four steps:

- GPD approach/model  $\rightarrow$  values > 98% quantile
- **2** Estimating first PWM :  $\mathbb{E}[XF(X)]$
- Olustering at-site PWM values
- Homogeneous regions = Clusters

#### Remark

One region per station with this method.

Philomène Le Gall

3

Sac

### Limits of these approaches

- **Rol**: Choice of the characteristics
- Partitionning as in Carreau et al. [2017]: choice of the threshold

3

18 A.

Image: A matrix

### Limits of these approaches

- Rol: Choice of the characteristics
- **Partitionning** as in Carreau et al. [2017]: choice of the threshold

#### What's new ?

A threshold-free clustering algorithm.

### Table of contents

#### Introduction

2 Regional Frequency Analysis

3 A threshold-free partitionning

- Probability Weighted Moments
- Threshold-free model
- Clustering methods

#### Application to Switzerland

Identifying homogeneous regions for extreme rainfall.

Methode based on :

- Partitionning in homogeneous regions
- Probability Weighted Moments (PWM)
- Extended model (no block, no threshold) : EGPD

### Probability Weighted Moments

#### Definition

# Let $X \underset{c.d.f}{\sim} F$ , a random variable. PWM of order k of X is defined as

$$\alpha_k := \mathbb{E}\left[XF(X)^k\right]$$

3

### Probability Weighted Moments

#### Definition

# Let X $\underset{c.d.f}{\sim}$ F, a random variable. PWM of order k of X is defined as

$$\alpha_k := \mathbb{E}\left[XF(X)^k\right]$$

#### Theorem (Guillou et al. [2009])

For k = 0, 1, 2,

$$\sqrt{n} (\hat{\alpha}_k - \alpha_k) \stackrel{d}{\longrightarrow} \mathcal{N}(0, \sigma_k^2)$$

where

$$\hat{\alpha}_k := \frac{1}{n} \sum_{i=1}^n \left(\frac{i}{n}\right)^k X_{(i)}$$

Philomène Le Gall

э

Sac

#### A threshold-free model Naveau et al. [2016]

Goal : Modeling low, moderate and heavy rainfall intensities (EVT).

|                   |                      | < D > < D > < E > < E > < E > | E ♥) Q (* |
|-------------------|----------------------|-------------------------------|-----------|
| Philomène Le Gall | PhD students seminar | 28 January 2020               | 14 / 26   |

#### A threshold-free model Naveau et al. [2016]

Goal : Modeling low, moderate and heavy rainfall intensities (EVT).

#### Theorem

Philomène Le

The precipitation variable Y can be modeled as

$$Y = \sigma H_{\xi}^{-1} \left[ G^{-1} \left( U 
ight) 
ight], \ \sigma \in \mathbb{R}_{+}^{*}$$

where  $U \sim \mathcal{U}$  [0, 1],  $H_{\xi}^{-1}$  inverse c.d.f of  $GPD(1, \xi)$  and G a skewed c.d.f.

| Gall | PhD students seminar | 28 January 2020 | 14 / 26 |
|------|----------------------|-----------------|---------|
| Gall | PhD students seminar | 28 January 2020 | 14,     |

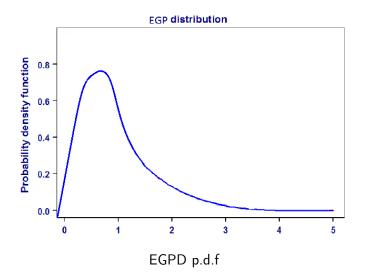
#### A threshold-free model Naveau et al. [2016]

Goal : Modeling low, moderate and heavy rainfall intensities (EVT).

#### Theorem

The precipitation variable Y can be modeled as

$$Y = \sigma H_{\xi}^{-1} \left[ G^{-1} \left( U 
ight) 
ight], \ \sigma \in \mathbb{R}_{+}^{*}$$


where  $U \sim \mathcal{U}$  [0,1],  $H_{\xi}^{-1}$  inverse c.d.f of  $GPD(1,\xi)$  and G a skewed c.d.f.

#### Remark

For instance,  $G: u \mapsto u^{\kappa}$  suits.

|                   |                      |                 | () (()  |
|-------------------|----------------------|-----------------|---------|
| Philomène Le Gall | PhD students seminar | 28 January 2020 | 14 / 26 |

### EGPD density function



Philomène Le Gall

28 January 2020 15 / 26

- 一司

ъ

3

DQC

#### Describing the tail distribution

Definition (Diebolt et al. [2008])

$$R(X) = \frac{3\alpha_2 - \alpha_0}{2\alpha_1 - \alpha_0}$$

| Philomène Le Gall | PhD students seminar | 28 January 2020 |
|-------------------|----------------------|-----------------|
|-------------------|----------------------|-----------------|

3

#### Describing the tail distribution

Definition (Diebolt et al. [2008])

$$R(X) = \frac{3\alpha_2 - \alpha_0}{2\alpha_1 - \alpha_0}$$

#### Theorem (Naveau et al. [2016])

R(EGPD) only depends on  $\kappa$  and  $\xi$ ,

$${\sf R}({\sf EGPD})=rac{3B(3\kappa,1-\xi)-B(\kappa,1-\xi)}{2B(2\kappa,1-\xi)-B(\kappa,1-\xi)}$$

Philomène Le Gall

3

イロト 不得下 イヨト イヨト

**Reminder**: We aim at partitionning space in homogeneous regions for extreme rainfall.

3

・ロト ・ 四ト ・ ヨト ・ ヨト …

Sampling (all positive precipitation)

イロト イボト イヨト イヨト 二日

- Sampling (all positive precipitation)
- 2 Estimating the at-site PWM  $\rightarrow \alpha_k$

3

イロト イボト イヨト イヨト

- Sampling (all positive precipitation)
- 2 Estimating the at-site PWM  $\rightarrow \alpha_k$

3 Estimating the at-site ratio R of PWM  $\rightarrow \hat{R} = \frac{3\hat{lpha}_2 - \hat{lpha}_0}{2\hat{lpha}_1 - \hat{lpha}_0}$ 

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Sampling (all positive precipitation)
- 2 Estimating the at-site PWM  $\rightarrow \alpha_k$

Solution Estimating the at-site ratio R of PWM  $\rightarrow \hat{R} = \frac{3\hat{\alpha}_2 - \hat{\alpha}_0}{2\hat{\alpha}_1 - \hat{\alpha}_0}$ 

 Clustering the at-site ratio estimations: Hierarchical clustering, K-means or K-medoids

|  | omène |  |
|--|-------|--|
|  |       |  |

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

## K-means Du et al. [2006]

|                   |                      | < □ ▶ | ▲圖▶ ▲ 필▶ ▲ 필▶   | ヨー つくで  |
|-------------------|----------------------|-------|-----------------|---------|
| Philomène Le Gall | PhD students seminar |       | 28 January 2020 | 18 / 26 |

## Hierearchical clustering

|            | K-means/medoids          | НСА                        |
|------------|--------------------------|----------------------------|
| Drawbacks  | Initialisation dependent | Costly                     |
| Advantages | Cheap                    | Initialisation independent |

#### Remark

K-medoids  $\sim$  with centers belonging to the dataset.

| omène |  |
|-------|--|
|       |  |

Image: Image:

3

20 / 26

## Table of contents

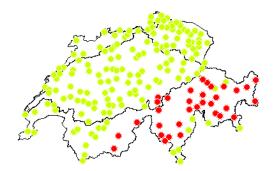
#### Introduction

- 2 Regional Frequency Analysis
- 3 A threshold-free partitionning

#### Application to Switzerland

- Clustering on marginal distributions
- Clustering on pair-dependence

### Application to Switzerland


Dataset: Daily rainfall, 85 years.



#### Weather stations in Switzerland

| DI .  |        |         |  |
|-------|--------|---------|--|
| Phi   | omène  | le Gall |  |
| E III | oniene |         |  |

### Application to Switzerland



#### Clustered stations by marginal distributions

| DL |         |         |
|----|---------|---------|
| Ph | llomene | Le Gall |
|    |         |         |

< □ > < 凸

This approach does not take into account:

- Spatial dependence
- Temporal dependence
- Non-stationarity

3

< □ > < 凸

### Spatial dependence Bador et al. [2015]

Measure of pair-synchronicity with the F-madogram.

|                   |                      | < □ > | · 《圖· 《콜· 《콜·   | E 900   |
|-------------------|----------------------|-------|-----------------|---------|
| Philomène Le Gall | PhD students seminar |       | 28 January 2020 | 25 / 26 |

### Spatial dependence Bador et al. [2015]

Measure of pair-synchronicity with the F-madogram.



#### Clustered stations by spatial dependence

Philomène Le Gall

PhD students seminar

28 January 2020 25 / 26

Image: A matrix of the second seco

# How to combine clustering based on marginal distributions and pair-dependence ?

3

크 > - ㅋㅋ>

# How to combine clustering based on marginal distributions and pair-dependence ?

## Thank you for your attention !

Philomène Le Gall

PhD students seminar

28 January 2020 26 / 26

- M. Bador, P. Naveau, E. Gilleland, M. Castellà, and T. Arivelo. Spatial clustering of summer temperature maxima from the cnrm-cm5 climate model ensembles & e-obs over europe. *Weather and climate extremes*, 9:17–24, 2015.
- J. Carreau, P. Naveau, and L. Neppel. Partitioning into hazard subregions for regional peaks-over-threshold modeling of heavy precipitation. *Water Resources Research*, 53(5):4407–4426, 2017.
- J. Diebolt, A. Guillou, P. Naveau, and P. Ribereau. Improving probability-weighted moment methods for the generalized extreme value distribution. *REVSTAT-Statistical Journal*, 6(1):33–50, 2008.
- Q. Du, M. Emelianenko, and L. Ju. Convergence of the lloyd algorithm for computing centroidal voronoi tessellations. *SIAM journal on numerical analysis*, 44(1):102–119, 2006.
- G. Evin, J. Blanchet, E. Paquet, F. Garavaglia, and D. Penot. A regional model for extreme rainfall based on weather patterns subsampling. *Journal of Hydrology*, 541:1185–1198, 2016.
- A. Guillou, P. Naveau, J. Diebolt, and P. Ribereau. Return level bounds for discrete and continuous random variables. *test*, 18(3):584, 2009.

Philomène Le Gall

PhD students seminar

- J. Hosking, J. Wallis, and E. Wood. Estimation of the Generalized Extreme-Value Distribution by the Method of Probability-Weighted Moments. 27:251–261, 08 1985.
- P. Naveau, R. Huser, P. Ribereau, and A. Hannart. Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection. *Water Resources Research*, 52(4):2753–2769, 2016.