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Motivations: non-imaging optics

Goal: design optical components which transport light energy

Applications:

» car beam design (avoid blinding incoming cars)
» luminaire / caustic design (reduce light loss and light pollution)

We will:
1. Explain the strong link between optical component design and optimal transport

2. Discretize particular instances of optimal transport to solve these problems
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Introduction: imaging optics

Input: a source X, a target Y and a bijection [ : X — Y
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Introduction: imaging optics

Input: a source X, a target Y and a bijection [ : X — Y

Component (mirror) S = surface
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Introduction: imaging optics

Input: a source X, a target Y and a bijection [ : X — Y
Component (mirror) S = surface

T : X — Y models the behaviour of the component when hit by a ray

We can assume T'(z) = F(x,ng(x)) and F' = Snell's law
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Introduction: imaging optics

Input: a source X, a target Y and a bijection [ : X — Y
Component (mirror) S = surface

T : X — Y models the behaviour of the component when hit by a ray

We can assume T'(z) = F(x,ng(x)) and F' = Snell's law

Problem: Find S such that F'(x,ns(x)) = f(z) for all z € X
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Introduction: non-imaging optics

Non-imaging optics: the bijection f is not an input anymore



Introduction: non-imaging optics

Non-imaging optics: the bijection f is not an input anymore
» One approach: estimate f with a heuristic and integrate the normals ng

Possible idea: use optimal transport to determine f but still a heuristic

source surface

target positions with OT

[Schwartzburg '14, Feng, Froese, Liang '16]
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Introduction: non-imaging optics

Non-imaging optics: the bijection f is not an input anymore

» One approach: estimate f with a heuristic and integrate the normals ng
Possible idea: use optimal transport to determine f but still a heuristic

target normals

-------

[Schwartzburg '14, Feng, Froese, Liang '16]
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Introduction: non-imaging optics

Non-imaging optics: the bijection f is not an input anymore

» One approach: estimate f with a heuristic and integrate the normals ng

Possible idea: use optimal transport to determine f but still a heuristic

» Example of a discretization of a non-imaging optics problem:
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Introduction: non-imaging optics

Non-imaging optics: the bijection f is not an input anymore

» One approach: estimate f with a heuristic and integrate the normals ng

Possible idea: use optimal transport to determine f but still a heuristic

» Example of a discretization of a non-imaging optics problem:
Mirror S

Collimated source
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Introduction: non-imaging optics

Non-imaging optics: the bijection f is not an input anymore
» One approach: estimate f with a heuristic and integrate the normals ng

Possible idea: use optimal transport to determine f but still a heuristic

» Example of a discretization of a non-imaging optics problem:

mirror S

X

light source

S

—> Goal: prescribe areas of facets = reflected intensity in a direction
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Introduction: non-imaging optics

Non-imaging optics: the bijection f is not an input anymore
» One approach: estimate f with a heuristic and integrate the normals ng

Possible idea: use optimal transport to determine f but still a heuristic

» Example of a discretization of a non-imaging optics problem:

mirror S

X

(z, (z|p(y)) — ¥ (y))

light source

S

—> Goal: prescribe areas of facets = reflected intensity in a direction

Observation: @y = dual variable in an optimal transport problem

—> dual variable gives a parametrization of the mirror S
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Introduction: non-imaging optics

Non-imaging optics: the bijection f is not an input anymore

» One approach: estimate f with a heuristic and integrate the normals ng

Possible idea: use optimal transport to determine f but still a heuristic

» Example of a discretization of a non-imaging optics problem:

» We focus on semi-discrete optimal transport:

» Efficient numerical methods

» Regularity of the solutions: convexity — important for the fabrication
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Overview

A. Optimal transport

1. Generalities on optimal transport
2. Semi-discrete optimal transport

3. OT between a triangulation and a point cloud

B. Optimal transport and non-imaging optics
1. Light Energy Conservation equation
2. Generic and parameter-free algorithm
3. Numerical results



Optimal transport: introduction

Goal: Find a mass-preserving mapping 1': X — Y between two probability
measures £ and ¥ minimizing a transport cost c
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Optimal transport: introduction

Goal: Find a mass-preserving mapping 7' : X — Y between two probability
measures ¢ and ¥ minimizing a transport cost c

Monge formulation: minimize [ c(x,T(z))d p(x)
where T Is a transport map between 1 and v
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OT provides a means to measure distances between measures

Applications:



Optimal transport: applications

OT provides a means to measure distances between measures

Applications:

» Interpolation between surfaces

7.2

[Lévy et al "17]



Optimal transport: applications

OT provides a means to measure distances between measures

Applications:

» Interpolation between surfaces
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Optimal transport: applications

OT provides a means to measure distances between measures

Applications:

» Interpolation between surfaces

» Inverse problems: reconstruction of the early universe, shape matching...

» Partial differential equations: fluid mechanics...

L

7 _4 [de Goes et al "15]



Kantorovich relaxation

minimize [ c(x,T(x))dp(x) : T transport map between 4 and v (M)

» Monge formulation: no solutions even for simple problems and non-linear

—> Idea: replace the transport map 1" by a probability measure v on X XY
— transport plan v(A x B) = amount of mass moved from A to B




Kantorovich relaxation

minimize [ c(x,T(x))dp(x) : T transport map between 4 and v (M)

» Monge formulation: no solutions even for simple problems and non-linear
—> Idea: replace the transport map 1" by a probability measure v on X XY

— transport plan v(A x B) = amount of mass moved from A to B

Kantorovich formulation: minimize [, . c(z,y)d~y(z,y)
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—> linear programming problem with convex constraints = existence of solutions
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Kantorovich relaxation

minimize [ c(x,T(x))dp(x) : T transport map between 4 and v (M)

» Monge formulation: no solutions even for simple problems and non-linear
—> Idea: replace the transport map 1" by a probability measure v on X XY

— transport plan v(A x B) = amount of mass moved from A to B

Kantorovich formulation: minimize [, . c(z,y)d~y(z,y)
where 7 € Prob(X x Y) such that (Px)xzvy = p and (Py)yy =v (£5)

—> linear programming problem with convex constraints = existence of solutions

Dual problem: maximize [ ¢(z)d u(z) — |y ¥ (y) dv(y)

; . (K™)
where ¢ € CO(X), ¢ € CO(Y) and ¢(z) — ¥(y) < ¢(z,y)
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Kantorovich relaxation

minimize [ c(x,T(x))dp(x) : T transport map between 4 and v (M)

» Monge formulation: no solutions even for simple problems and non-linear
—> Idea: replace the transport map 1" by a probability measure v on X XY

— transport plan v(A x B) = amount of mass moved from A to B

Kantorovich formulation: minimize [, . c(z,y)d~y(z,y)
where 7 € Prob(X x Y) such that (Px)xzvy = p and (Py)yy =v (£5)

—> linear programming problem with convex constraints = existence of solutions

Dual problem: maximize [ ¢(z)dp(z) — |3 ¢(y)dv
where ¢ € C%(X), v € C°(Y) and ¢(z) — ¥(y) < c(z,y) (K7)
» We introduce: 9°(x) = 12£[c(a:,y) + 9 (y)] to remove the constraint
J
maximize [, ¥¢(z — [, ( ) where ¢ € C(Y) (K**)
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Overview

A. Optimal transport

1. Generalities on optimal transport
2. Semi-discrete optimal transport

3. OT between a triangulation and a point cloud

B. Optimal transport and non-imaging optics
1. Light Energy Conservation equation
2. Generic and parameter-free algorithm
3. Numerical results



Setting

Input: 4 probability measure on X and v = Zf\il Vi0y, onY ={y1,...,yn}
® Y

X

®

®
Y
®
®
Finding optimal transport between 1 and v:
maximize ® () := [ infi<i<n(c(z,y:) + ¢i) d p(x) — Siv ) vit; (K)

® is called the Kantorovich functional
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Setting

Input: 4 probability measure on X and v = Z,f\il Vi0y, onY ={y1,...,yn}

Laguerre diagram o

Finding optimal transport between 1 gnd v:

maximize ® (1)) := fx®(c(x, ;) + @ZL”) — fo\; Vs (K**)

® is called the Kantorovich functional
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Setting

Input: p probability measure on X and v = Zfll Vi0y, onY ={y1,...,yn}

Lag; (w)
® Y

Laguerre diagram o

Finding optimal transport between 1 gnd v:

maximize ® (1)) := fx@(ﬂi, ;) —I—@x) — vazl Vi (K**)

® is called the Kantorovich functional
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Setting

Input: p probability measure on X and v = Zfll Vi0y, onY ={y1,...,yn}

Lag; (w)
® Y

Finding optimal transport between 1 and v:

maximize ®(¢) := [, Z,fil fLagi(w)(C(w,yi) + i) dp(z) — Zi\; vty (K)

® is called the Kantorovich functional
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Setting

Input: 4 probability measure on X and v = Zfll Vi0y, onY ={y1,...,yn}

Lag; (1))

Finding optimal transport between 1 and v:

maximize ®(¢) := [, Z,fil fLagi(w)(C(% yi) + ;) dp(z) — Zf\il vii (K™

® is called the Kantorovich functional
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Discrete Monge-Ampere equation

Recall: ®(¢)) =3, Jiag, () (€@, 9:) + i) d p(x) — S vit;

Theorem: Regularity of ®
If 11 is AC and verifies the (Neg) condition, then @ is concave and C! and

g_iw) = G;(Y) — v; where G;(v) := u(Lag, (v))

Corollary: T, is an optimal transport map between p and v
<= 1) Is a maximizer of ¢

— Vo(y) =0
<— Vie{l,...,N}, G;(¢v) =y, (DMA)
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Discrete Monge-Ampere equation

Recall: ®(¢)) =3, Jiag, () (€@, 9:) + i) d p(x) — S vit;

Theorem: Regularity of ®
If 11 is AC and verifies the (Neg) condition, then @ is concave and C! and

g_iw) = G;(Y) — v; where G;(v) := u(Lag, (v))

Corollary: T, is an optimal transport map between p and v
<= 1) Is a maximizer of ¢

— Vo(y) =0
<— Vie{l,...,N}, G;(¢v) =y, (DMA)

Numerical methods?
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Damped Newton Algorithm: description

Recall: G : ¢ € RY — (u(Lag,(v)))1<i<n € RY
Admissible domain: F. := {¢p € RY | Vi, G;(v)) > €}
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Damped Newton Algorithm: description

Recall: G : ¢ € RY — (u(Lag,(v)))1<i<n € RY
Admissible domain: F. := {¢p € RY | Vi, G;(v)) > €}

Damped Newton algorithm for solving (DMA)

Input: ?7DO - RN Ss.t. € 1= %minlSiSN mm(Gz(wo), 1/7;) > ()

[Mirebeau '15]
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Damped Newton Algorithm: description

Recall: G : ¢ € RY — (u(Lag,(v)))1<i<n € RY
Admissible domain: F. := {¢p € RY | Vi, G;(v)) > €}

Damped Newton algorithm for solving (DMA)

Input: ?7DO - RN Ss.t. € 1= %minlSiSN mm(Gz(wo), 1/7;) > ()

Loop: — Compute Newton direction: v* := —DG (¢*)T (G (¢*) — v)
A/\

—— Choose ¢ so that "t := ¢ + 274y, € F.
and [|G(¢F+1) —v| < (1 - 2FD) |G (W) - v

12 - 3
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Damped Newton Algorithm: description

Recall: G : ¢ € RY — (u(Lag,(v)))1<i<n € RY
Admissible domain: F. := {¢p € RY | Vi, G;(v)) > €}

Damped Newton algorithm for solving (DMA)

Input: ?7DO - RN Ss.t. € 1= %minlSiSN mm(Gz(wo), 1/7;) > ()

Loop: — Compute Newton direction: v* := —DG (¢*)T (G (¢*) — v)
A/\
— Choose ¢ so that yY*t1 :=y* + 275, € E. Damping

and ||G(y*) —v|] < (1 = 28FD) |G (WF) — v
[Mirebeau '15]

—> (Convergence when X is a triangulated surface?
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Overview

A. Optimal transport

1. Generalities on optimal transport
2. Semi-discrete optimal transport

3. OT between a triangulation and a point cloud

B. Optimal transport and non-imaging optics
1. Light Energy Conservation equation
2. Generic and parameter-free algorithm
3. Numerical results



OT between a triangulation and a point cloud

Input:
» A prob. measure on a triangulation X in R?, p = > .. Mo, Where o = triangle

» A prob. measure on a point cloud Y C RY, v = vazl V; 0y

7
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OT between a triangulation and a point cloud

Input:
» A prob. measure on a triangulation X in R%, p =" _pu,, where o = triangle

> A prob. measure on a point cloud Y C RY, v =32 | 16,

Output:
» Transport plan between p and v for quadratic cost ~~ Laguerre cells (Lag;(¢))1<i<n
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OT between a triangulation and a point cloud

Input:
» A prob. measure on a triangulation X in R?, p = > .. Mo, Where o = triangle

> A prob. measure on a point cloud Y C RY, v =30 | 16,

Output:

» Transport plan between p and v for quadratic cost ~~ Laguerre cells (Lag;(¢))1<i<n

Question: can we use still use the Newton method to solve OT between i and 7
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OT between a triangulation and a point cloud

Input:
» A prob. measure on a triangulation X in R?, p = > .. Mo, Where o = triangle

> A prob. measure on a point cloud Y C RY, v =30 | 16,

Output:

» Transport plan between p and v for quadratic cost ~~ Laguerre cells (Lag;(¢))1<i<n

Question: can we use still use the Newton method to solve OT between i and 7

» 1 not AC anymore — Brenier’s theorem does not apply anymore!

—> Optimal transport may not be unique or even exists

Solution: use a genericity assumption on the point cloud Y and regularity on p

14 -5



Main theorem

Theorem: [Mérigot, M., Thibert, SIIMS "18]

Assume L is a regular simplicial measure
Y1, -+ ,YN are In generic position

Then the damped Newton method converges with linear rate globally i.e.

|G(*) — vl < (1= Z)FIG(°) - v|| where 7* €]0, 1]
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Main theorem

Theorem: [Mérigot, M., Thibert, SIIMS "18]

Assume s is a regular simplicial measur

— v . a0 o
Y1, -+ ,Yf are in generic pos@

Then the damped Newton method converges with linear rate globally i.e.

|G(*) — vl < (1= Z)FIG(°) - v|| where 7* €]0, 1]

Genericity position: example of non-generic case, edge of o L (y;y,)

Lag, (1) g_g;(@bl) x pu(0Lag;(¥') No) >0
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Main theorem

Theorem: [Mérigot, M., Thibert, SIIMS "18]

Assume s is a regular simplicial measur

— v . a0 o
Y1, -+ ,Yf are in generic pos@

Then the damped Newton method converges with linear rate globally i.e.

|G(*) — vl < (1= Z)FIG(°) - v|| where 7* €]0, 1]

Genericity position: example of non-generic case, edge of o L (y;y,)

Lag, (¢?) 2% (4?) o< (0 Lag;(4?) N o) =0

Y; — G not C!

15 - 4



Numerical results

Optimal transport for a uniform source

Initial: Y
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Numerical results

Optimal transport for a uniform source

Initial: Y
16 - 2 v



Numerical results

» Optimal quantization of a probability measure on a triangulated surface

» Remeshing with respect to a density p (uniform, mean curvature)
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Numerical results

» Optimal quantization of a probability measure on a triangulated surface

» Remeshing with respect to a density p (uniform, mean curvature)
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Overview

A. Optimal transport

1. Generalities on optimal transport
2. Semi-discrete optimal transport

3. OT between a triangulation and a point cloud

B. Optimal transport and non-imaging optics
1. Light Energy Conservation equation

2. Generic and parameter-free algorithm
3. Numerical results
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Four non-imaging optics problems

Mirror R G2 Targ?ﬁght
\ Lens R
X,
\ \\‘5\00
@0@’“ S2 5
R2 x {0} 2 R? x {0}
Collimated source Collimated source

RN N N N N NN NN N NN NN NN NN
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Four non-imaging optics problems

Mirror R G2 Targ?ﬁght
Lens R
R? x {0}

Collimated source

RN N N N N NN NN N NN NN NN NN

Point source
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Four non-imaging optics problems

Mirror R

Point source

/
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Four non-imaging optics problems

Mirror R S2 Targ?ﬁght
concave too '

Lens R
_ R? x {0}
Collimated source Collimated source

RN N N N N NN NN N NN NN NN NN

Ta rg}ﬁght

Point source Point source
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Mirror design for a collimated source

Input: collimated light source 1 and target light at infinity v = ) . v;4,,

Goal: design a convex mirror R that sends i to v

19-1
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Mirror design for a collimated source

Input: collimated light source p and target light at infinity v = ) . v;0,,

Goal: design a convex mirror R that sends i to v

1. Discretization: p supported on a triangulation X and v on a point cloud Y

, AdA
R
g
X x\
/
/ yiESQ
e
_—
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Mirror design for a collimated source

Input: collimated light source p and target light at infinity v = ) . v;0,,

Goal: design a convex mirror R that sends i to v

2. R is convex and can be parametrized by R () = (z, max (z|p;) — i)

19-3
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Mirror design for a collimated source

Input: collimated light source p and target light at infinity v = ) . v;0,,

Goal: design a convex mirror R that sends i to v

3. V;(v) ={x € X | x reflected towards y;} and G;(v) = u(V;(¢))

y A
R
T

19 - 4
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Mirror design for a collimated source

Input: collimated light source p and target light at infinity v = ) . v;0,,

Goal: design a convex mirror R that sends i to v

3. V;(v) ={x € X | x reflected towards y;} and G;(v) = u(V;(¢))
/ 

~
S
! ~
1 N
N
! N
~
S
~
N
N
N
N
~
S
S
N
N
N

. T = (x|pi) — P
known slope  unknown elevation
X
A/

/ yi €87
e

-

—

Find ¢y € RN such that Vi € {1,...,N}, G;(v0) =v; (LECQ)
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Mirror design for a collimated source

Input: collimated light source p and target light at infinity v = ) . v;0,,

Goal: design a convex mirror R that sends i to v
4. Vi(yp) ={z € X/Vj, —(z|pi) + i < —(z|p;j) +v;} = Lag,(y) for c(z, p) = —{z|p)
S

~
S
! ~
1 N
N
! N
~
S
~
N
N
N
N
~
S
S
N
N
N

. T = (x|pi) — P
known slope  unknown elevation
X
A/

/ yi €87
e

-

—

Find ¢y € RN such that Vi € {1,...,N}, G;(v0) =v; (LECQ)
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Light Energy Conservation equation

Goal: solve (LEC) where

» V,(v) is a Laguerre cell = optimal transport problem for some cost ¢
» X C R? x {0} for collimated lights and X C S? for point lights

» R, is a parametrization of the component

» piecewise affine function for mirror & lens / collimated light
» pieces of paraboloids for mirror / point light

» pieces of ellipsoids for lens / point light

,! /wm\

Mirror / collimated light Mirror / point light

SQ

Y

20
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Overview

A. Optimal transport

1. Generalities on optimal transport
2. Semi-discrete optimal transport

3. OT between a triangulation and a point cloud

B. Optimal transport and non-imaging optics
1. Light Energy Conservation equation
2. Generic and parameter-free algorithm
3. Numerical results



Generic algorithm

Algorithm: Mirror / lens construction

Input A light SOUree A5 depends on the optical design problem
A target light Y, v

A tolerance n > 0 /

A parametrization function 9 — R
A transformation function 7 : Lag — X N Pow

Output A triangulation R of a mirror or lens R

22 -1



Generic algorithm

Algorithm: Mirror / lens construction

Input A light SOUree A5 depends on the optical design problem
A target light Y, v

A tolerance n > 0 /

A parametrization function 9 — R
A transformation function 7 : Lag — X N Pow

Output A triangulation R of a mirror or lens R

Step 1 Initialization
¥ < INITIAL_WEIGHTS(Y) i.e. ¥V € E.
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Generic algorithm

Algorithm: Mirror / lens construction

Input A light SOUree A5 depends on the optical design problem
A target light Y, v

A tolerance n > 0 /

A parametrization function 9 — R
A transformation function 7 : Lag — X N Pow
Output A triangulation R of a mirror or lens R

Step 1 Initialization
¥ < INITIAL_WEIGHTS(Y) i.e. ¥V € E.

Step 2 Solve G(¢) =0
1) < DAMPED_NEWTON(X, 1, Y, v, 9", n, 7)
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Generic algorithm

Algorithm: Mirror / lens construction

Input A light SOUree A5 depends on the optical design problem
A target light Y, v

A tolerance n > 0 /

A parametrization function 9 — R
A transformation function 7 : Lag — X N Pow
Output A triangulation R of a mirror or lens R

Step 1 Initialization
¥ < INITIAL_WEIGHTS(Y) i.e. ¥V € E.

Step 2 Solve G(¢) =0

1) < DAMPED_NEWTON(X, 1, Y, v, 9", n, 7)
Step 3 Construct a triangulation Ry of R

Rr < SURFACE_CONSTRUCTION (%), Ry)

22 - 4
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Overview

A. Optimal transport

1. Generalities on optimal transport
2. Semi-discrete optimal transport

3. OT between a triangulation and a point cloud

B. Optimal transport and non-imaging optics
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3. Numerical results



Numerical results: mirror design / collimated light

Mirror R Target image: N = 256 x 256 Diracs

Collimated source
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Numerical results: mirror design / collimated light

Mirror K

Target image: NV = 256 x 256 Diracs

Collimated source

Laguerre diagram and mesh Reflected image
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Numerical results: other settings

T R?x {0)
Collimated source

25 Point source
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Numerical results: physical prototypes




Summary & Perspectives

» Optimal transport can be used to unify non-imaging optics problems

» Optimal transport can be solved very efficiently using Newton algorithm
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Summary & Perspectives

» Optimal transport can be used to unify non-imaging optics problems

» Optimal transport can be solved very efficiently using Newton algorithm

Thank you for your attention
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