Semi-discrete optimal transport and applications to non-imaging optics

Jocelyn Meyron, Université Grenoble Alpes, LJK
PhD students' seminar, October 25th 2018
Motivations: non-imaging optics

Goal: design optical components which *transport* light energy
Motivations: non-imaging optics

Goal: design optical components which transport light energy

Applications:
- car beam design (avoid blinding incoming cars)
- luminaire / caustic design (reduce light loss and light pollution)
Motivations: non-imaging optics

Goal: design optical components which *transport* light energy

Applications:
- car beam design (avoid blinding incoming cars)
- luminaire / caustic design (reduce light loss and light pollution)

We will:
1. Explain the **strong** link between optical component design and optimal transport
2. **Discretize** particular instances of optimal transport to solve these problems
Introduction: imaging optics

Input: a source X, a target Y and a bijection $f : X \rightarrow Y$
Introduction: imaging optics

Input: a source X, a target Y and a bijection $f : X \rightarrow Y$

Component (mirror) $S = \text{surface}$
Introduction: imaging optics

Input: a source X, a target Y and a bijection $f : X \to Y$

Component (mirror) $S = $ surface

$T : X \to Y$ models the behaviour of the component when hit by a ray

We can assume $T(x) = F(x, \vec{n}_S(x))$ and $F = $ Snell’s law
Introduction: imaging optics

Input: a source X, a target Y and a bijection $f : X \rightarrow Y$

Component (mirror) $S = \text{surface}$

$T : X \rightarrow Y$ models the behaviour of the component when hit by a ray

We can assume $T(x) = F(x, \vec{n}_S(x))$ and $F = \text{Snell’s law}$

Problem: Find S such that $F(x, \vec{n}_S(x)) = f(x)$ for all $x \in X$
Non-imaging optics: the bijection f is not an input anymore
Non-imaging optics: the bijection f is not an input anymore

- One approach: estimate f with a heuristic and integrate the normals \vec{n}_S

Possible idea: use **optimal transport** to determine f but still a heuristic

[Schwartzburg '14, Feng, Froese, Liang '16]
Non-imaging optics: the bijection f is not an input anymore

- One approach: estimate f with a heuristic and integrate the normals \vec{n}_S

Possible idea: use **optimal transport** to determine f but still a heuristic

 target normals

[Schwartzburg '14, Feng, Froese, Liang '16]
Introduction: non-imaging optics

Non-imaging optics: the bijection f is not an input anymore

- One approach: estimate f with a heuristic and integrate the normals \vec{n}_S

 Possible idea: use **optimal transport** to determine f but still a heuristic

[Schwartzburg '14, Feng, Froese, Liang '16]
Introduction: non-imaging optics

Non-imaging optics: the bijection f is not an input anymore

- One approach: estimate f with a heuristic and integrate the normals \vec{n}_S

 Possible idea: use \textbf{optimal transport} to determine f but still a heuristic

- Example of a discretization of a non-imaging optics problem:
Non-imaging optics: the bijection f is not an input anymore

- One approach: estimate f with a heuristic and integrate the normals \vec{n}_S
 - Possible idea: use optimal transport to determine f but still a heuristic

- Example of a discretization of a non-imaging optics problem:
Introduction: non-imaging optics

Non-imaging optics: the bijection f is not an input anymore

- One approach: estimate f with a heuristic and integrate the normals \vec{n}_S
 Possible idea: use optimal transport to determine f but still a heuristic

- Example of a discretization of a non-imaging optics problem:

 \Rightarrow Goal: prescribe areas of facets \approx reflected intensity in a direction
Introduction: non-imaging optics

Non-imaging optics: the bijection f is not an input anymore

- One approach: estimate f with a heuristic and integrate the normals n_S
- Possible idea: use *optimal transport* to determine f but still a heuristic

- Example of a discretization of a non-imaging optics problem:

 $$\langle x, \langle x | p(y) \rangle - \psi(y) \rangle$$

 \[\implies \text{Goal: prescribe areas of facets } \approx \text{reflected intensity in a direction} \]

 \[\implies \text{Observation: } \psi = \text{dual variable} \text{ in an *optimal transport* problem} \]

 \[\implies \text{dual variable gives a } \text{parametrization} \text{ of the mirror } S \]
Introduction: non-imaging optics

Non-imaging optics: the bijection \(f \) is not an input anymore

- One approach: estimate \(f \) with a heuristic and integrate the normals \(\vec{n}_S \)
 Possible idea: use optimal transport to determine \(f \) but still a heuristic

- Example of a discretization of a non-imaging optics problem:

- We focus on semi-discrete optimal transport:
 - Efficient numerical methods
 - Regularity of the solutions: convexity \(\implies \) important for the fabrication
Overview

A. Optimal transport
 1. Generalities on optimal transport
 2. Semi-discrete optimal transport
 3. OT between a triangulation and a point cloud

B. Optimal transport and non-imaging optics
 1. Light Energy Conservation equation
 2. Generic and parameter-free algorithm
 3. Numerical results
Goal: Find a mass-preserving mapping $T : X \rightarrow Y$ between two probability measures μ and ν minimizing a transport cost c
Goal: Find a mass-preserving mapping $T : X \to Y$ between two probability measures μ and ν minimizing a transport cost c

Monge formulation: minimize $\int_X c(x, T(x)) \, d\mu(x)$

where T is a transport map between μ and ν (M)
Optimal transport: applications

OT provides a means to measure distances between measures

Applications:
Optimal transport: applications

OT provides a means to measure distances between measures

Applications:

▶ Interpolation between surfaces

[Lévy et al ’17]
Optimal transport: applications

OT provides a means to measure \textbf{distances} between measures

\textbf{Applications:}

- Interpolation between surfaces
- Inverse problems: reconstruction of the early universe, shape matching...

[Brenier et al '03 (pictures by B. Lévy)]

[Feydy et al '17]
Optimal transport: applications

OT provides a means to measure distances between measures

Applications:

- Interpolation between surfaces
- Inverse problems: reconstruction of the early universe, shape matching...
- Partial differential equations: fluid mechanics...

[de Goes et al '15]
Kantorovich relaxation

\[\text{minimize } \int_X c(x, T(x)) \, d\mu(x) : T \text{ transport map between } \mu \text{ and } \nu \quad (M) \]

- Monge formulation: *no solutions* even for simple problems and *non-linear*
 \[\Rightarrow\text{ idea: replace the transport map } T \text{ by a probability measure } \gamma \text{ on } X \times Y\]
 \[\Rightarrow \text{ transport plan } \gamma(A \times B) = \text{ amount of mass moved from } A \text{ to } B\]
Kantorovich relaxation

minimize $\int_X c(x, T(x)) \, d\mu(x) : T$ transport map between μ and ν \hspace{1cm} (M)

- Monge formulation: *no solutions* even for simple problems and non-linear
 ⟷ idea: replace the transport map T by a probability measure γ on $X \times Y$
 ⟷ **transport plan** $\gamma(A \times B) =$ amount of mass moved from A to B

Kantorovich formulation: minimize $\int_{X \times Y} c(x, y) \, d\gamma(x, y)$
where $\gamma \in \text{Prob}(X \times Y)$ such that $(P_X)^\# \gamma = \mu$ and $(P_Y)^\# \gamma = \nu$ \hspace{1cm} (K)

⟹ *linear* programming problem with convex constraints ⟷ existence of solutions
Kantorovich relaxation

\[
\text{minimize } \int_X c(x, T(x)) \, d\mu(x) : T \text{ transport map between } \mu \text{ and } \nu \quad (M)
\]

- Monge formulation: \textit{no solutions} even for simple problems and \textit{non-linear}
 \[\implies \text{idea: replace the transport map } T \text{ by a probability measure } \gamma \text{ on } X \times Y\]
 \[\implies \text{transport plan } \gamma(A \times B) = \text{amount of mass moved from } A \text{ to } B\]

\textit{Kantorovich} formulation: minimize \[\int_{X \times Y} c(x, y) \, d\gamma(x, y)\]
where \(\gamma \in \text{Prob}(X \times Y)\) such that \((P_X)_#\gamma = \mu\) and \((P_Y)_#\gamma = \nu \quad (K)\)

\[\implies \text{linear programming problem with convex constraints } \implies \text{existence of solutions}\]

\textit{Dual problem}: maximize \[\int_X \phi(x) \, d\mu(x) - \int_Y \psi(y) \, d\nu(y)\]
where \(\phi \in C^0(X), \psi \in C^0(Y)\) and \(\phi(x) - \psi(y) \leq c(x, y) \quad (K^*)\)
Kantorovich relaxation

\[
\text{minimize } \int_X c(x, T(x)) \, d\mu(x) : T \text{ transport map between } \mu \text{ and } \nu \quad (M)
\]

- Monge formulation: \textit{no solutions} even for simple problems and \textit{non-linear}
 \[\implies \text{idea: replace the transport map } T \text{ by a probability measure } \gamma \text{ on } X \times Y\]
 \[\implies \text{transport plan } \gamma(A \times B) = \text{amount of mass moved from } A \text{ to } B\]

\textbf{Kantorovich} formulation: minimize \[
\int_{X \times Y} c(x, y) \, d\gamma(x, y)
\]
where \(\gamma \in \text{Prob}(X \times Y)\) such that \((P_X)\#\gamma = \mu\) and \((P_Y)\#\gamma = \nu\) \quad (K)

\[\implies \text{linear programming problem with convex constraints } \implies \text{existence of solutions}\]

\textbf{Dual} problem: maximize \[
\int_X \phi(x) \, d\mu(x) - \int_Y \psi(y) \, d\nu(y)
\]
where \(\phi \in C^0(X), \psi \in C^0(Y)\) and \(\phi(x) - \psi(y) \leq c(x, y)\) \quad (K^*)

- We introduce: \(\psi^c(x) = \inf_{y \in Y} [c(x, y) + \psi(y)]\) to remove the constraint

\[
\text{maximize } \int_X \psi^c(x) \, d\mu(x) - \int_Y \psi(y) \, d\nu(y) \text{ where } \psi \in C^0(Y) \quad (K^{**})
\]
Overview

A. Optimal transport
 1. Generalities on optimal transport
 2. Semi-discrete optimal transport
 3. OT between a triangulation and a point cloud

B. Optimal transport and non-imaging optics
 1. Light Energy Conservation equation
 2. Generic and parameter-free algorithm
 3. Numerical results
Setting

Input: μ probability measure on X and $\nu = \sum_{i=1}^{N} \nu_i \delta_{y_i}$ on $Y = \{y_1, \ldots, y_N\}$

Finding optimal transport between μ and ν:

$$\max \Phi(\psi) := \int_X \inf_{1 \leq i \leq N} (c(x, y_i) + \psi_i) \, d\mu(x) - \sum_{i=1}^{N} \nu_i \psi_i \quad (K^{**})$$

Φ is called the **Kantorovich functional**
Setting

Input: μ probability measure on X and $\nu = \sum_{i=1}^{N} \nu_i \delta_{y_i}$ on $Y = \{y_1, \ldots, y_N\}$

Finding optimal transport between μ and ν:

$$\max \Phi(\psi) := \int_{X} \inf_{1 \leq i \leq N} (c(x, y_i) + \psi_i) \, d\mu(x) - \sum_{i=1}^{N} \nu_i \psi_i \quad (K^{**})$$

Φ is called the **Kantorovich functional**
Input: μ probability measure on X and $\nu = \sum_{i=1}^{N} \nu_i \delta_{y_i}$ on $Y = \{y_1, \ldots, y_N\}$

Finding optimal transport between μ and ν:

$$\max \Phi(\psi) := \int_X \inf_{1 \leq i \leq N} (c(x, y_i) + \psi_i) \, d\mu(x) - \sum_{i=1}^{N} \nu_i \psi_i$$ (K**)

Φ is called the **Kantorovich functional**

Definition: Laguerre cell of y_i: $\text{Lag}_i(\psi) = \{x \in X \mid \forall j, c(x, y_i) + \psi_i \leq c(x, y_j) + \psi_j\}$
Setting

Input: μ probability measure on X and $\nu = \sum_{i=1}^{N} \nu_i \delta_{y_i}$ on $Y = \{y_1, \ldots, y_N\}$

Finding optimal transport between μ and ν:

$$\max \Phi(\psi) := \int_X \sum_{i=1}^{N} \int_{\text{Lag}_i(\psi)} (c(x, y_i) + \psi_i) \, d\mu(x) - \sum_{i=1}^{N} \nu_i \psi_i \quad (\text{K}^{**})$$

Φ is called the **Kantorovich functional**

Definition: Laguerre cell of y_i: $\text{Lag}_i(\psi) = \{x \in X \mid \forall j, c(x, y_i) + \psi_i \leq c(x, y_j) + \psi_j\}$
Setting

Input: μ probability measure on X and $\nu = \sum_{i=1}^{N} \nu_i \delta_{y_i}$ on $Y = \{y_1, \ldots, y_N\}$

Finding optimal transport between μ and ν: $\max \Phi(\psi) := \int_X \sum_{i=1}^{N} \int_{\text{Lag}_i(\psi)} (c(x, y_i) + \psi_i) \, d\mu(x) - \sum_{i=1}^{N} \nu_i \psi_i$ (K***)

Φ is called the **Kantorovich functional**

Definition: Laguerre cell of y_i: $\text{Lag}_i(\psi) = \{x \in X \mid \forall j, \ c(x, y_i) + \psi_i \leq c(x, y_j) + \psi_j\}$

Definition: For $\psi \in \mathbb{R}^N$, we define $T_\psi : x \in X \mapsto \arg\min_{1 \leq i \leq N} (c(x, y_i) + \psi_i) \in Y$
Discrete Monge-Ampère equation

Recall: \(\Phi(\psi) = \sum_{i=1}^{N} \int_{\text{Lag}_i(\psi)} (c(x, y_i) + \psi_i) \, d\mu(x) - \sum_{i=1}^{N} \nu_i \psi_i \)

Theorem: Regularity of \(\Phi \)

If \(\mu \) is AC and verifies the (Neg) condition, then \(\Phi \) is concave and \(C^1 \) and

\[
\frac{\partial \Phi}{\partial \psi_i}(\psi) = G_i(\psi) - \nu_i \quad \text{where} \quad G_i(\psi) := \mu(\text{Lag}_i(\psi))
\]

Corollary: \(T_\psi \) is an optimal transport map between \(\mu \) and \(\nu \)

\[\iff \quad \psi \text{ is a maximizer of } \Phi \]
\[\iff \quad \nabla \Phi(\psi) = 0 \]
\[\iff \quad \forall i \in \{1, \ldots, N\}, \ G_i(\psi) = \nu_i \quad (\text{DMA})\]
Discrete Monge-Ampère equation

Recall: \(\Phi(\psi) = \sum_{i=1}^{N} \int_{\text{Lag}_{i}(\psi)} c(x, y_{i}) + \psi_{i} \, d\mu(x) - \sum_{i=1}^{N} \nu_{i} \psi_{i} \)

Theorem: Regularity of \(\Phi \)

If \(\mu \) is AC and verifies the (Neg) condition, then \(\Phi \) is concave and \(C^{1} \) and

\[
\frac{\partial \Phi}{\partial \psi_{i}}(\psi) = G_{i}(\psi) - \nu_{i} \quad \text{where} \quad G_{i}(\psi) := \mu(\text{Lag}_{i}(\psi))
\]

Corollary: \(T_{\psi} \) is an optimal transport map between \(\mu \) and \(\nu \)

\[\iff \quad \psi \text{ is a maximizer of } \Phi \]
\[\iff \quad \nabla \Phi(\psi) = 0 \]
\[\iff \quad \forall i \in \{1, \ldots, N\}, \quad G_{i}(\psi) = \nu_{i} \quad \text{(DMA)} \]

Numerical methods?
Damped Newton Algorithm: description

Recall: $G : \psi \in \mathbb{R}^N \mapsto (\mu(\text{Lag}_i(\psi)))_{1 \leq i \leq N} \in \mathbb{R}^N$

Admissible domain: $E_\varepsilon := \{\psi \in \mathbb{R}^N \mid \forall i, G_i(\psi) \geq \varepsilon\}$

[Mirebeau '15]
Damped Newton Algorithm: description

Recall: $G : \psi \in \mathbb{R}^N \mapsto (\mu(\text{Lag}_i(\psi)))_{1 \leq i \leq N} \in \mathbb{R}^N$

Admissible domain: $E_\varepsilon := \left\{ \psi \in \mathbb{R}^N \mid \forall i, G_i(\psi) \geq \varepsilon \right\}$

Damped Newton algorithm for solving (DMA)

Input: $\psi^0 \in \mathbb{R}^N$ s.t. $\varepsilon := \frac{1}{2} \min_{1 \leq i \leq N} \min(G_i(\psi^0), \nu_i) > 0$

[Mirebeau '15]
Damped Newton Algorithm: description

Recall: $G : \psi \in \mathbb{R}^N \mapsto (\mu(\text{Lag}_i(\psi)))_{1 \leq i \leq N} \in \mathbb{R}^N$

Admissible domain: $E_\varepsilon := \{\psi \in \mathbb{R}^N \mid \forall i, G_i(\psi) \geq \varepsilon\}$

Damped Newton algorithm for solving (DMA)

Input: $\psi^0 \in \mathbb{R}^N$ s.t. $\varepsilon := \frac{1}{2} \min_{1 \leq i \leq N} \min(G_i(\psi^0), \nu_i) > 0$

Loop: Compute Newton direction: $v^k := -DG(\psi^k) + (G(\psi^k) - \nu)$

Choose ℓ so that $\psi^{k+1} := \psi^k + 2^{-\ell} v_k \in E_\varepsilon$

and $\|G(\psi^{k+1}) - \nu\| \leq (1 - 2^{(\ell+1)}) \|G(\psi^k) - \nu\|$

[Mirebeau '15]
Damped Newton Algorithm: description

Recall: $G: \psi \in \mathbb{R}^N \mapsto (\mu(\text{Lag}_i(\psi)))_{1 \leq i \leq N} \in \mathbb{R}^N$

Admissible domain: $E_\varepsilon := \{\psi \in \mathbb{R}^N \mid \forall i, G_i(\psi) \geq \varepsilon\}$

Damped Newton algorithm for solving (DMA)

Input: $\psi^0 \in \mathbb{R}^N$ s.t. $\varepsilon := \frac{1}{2} \min_{1 \leq i \leq N} \min(G_i(\psi^0), \nu_i) > 0$

Loop:
- Compute Newton direction: $v^k := -DG(\psi^k) + (G(\psi^k) - \nu)$
- Choose ℓ so that $\psi^{k+1} := \psi^k + 2^{-\ell}v_k \in E_\varepsilon$
- Damping
 - and $\|G(\psi^{k+1}) - \nu\| \leq (1 - 2^{(\ell+1)})\|G(\psi^k) - \nu\|$

\implies **Convergence when** X **is a triangulated surface?**

Damping

$\rho(\text{Lag}_i(\psi)) \geq \varepsilon$
Overview

A. Optimal transport
 1. Generalities on optimal transport
 2. Semi-discrete optimal transport
 3. OT between a triangulation and a point cloud

B. Optimal transport and non-imaging optics
 1. Light Energy Conservation equation
 2. Generic and parameter-free algorithm
 3. Numerical results
OT between a triangulation and a point cloud

Input:
- A prob. measure on a triangulation X in \mathbb{R}^d, $\mu = \sum_{\sigma} \mu_\sigma$, where $\sigma = \text{triangle}$
- A prob. measure on a point cloud $Y \subset \mathbb{R}^d$, $\nu = \sum_{i=1}^{N} \nu_i \delta_{y_i}$
OT between a triangulation and a point cloud

Input:
- A prob. measure on a triangulation X in \mathbb{R}^d, $\mu = \sum_{\sigma} \mu_{\sigma}$, where $\sigma =$ triangle
- A prob. measure on a point cloud $Y \subset \mathbb{R}^d$, $\nu = \sum_{i=1}^{N} \nu_i \delta_{y_i}$

Output:
- Transport plan between μ and ν for quadratic cost \rightsquigarrow Laguerre cells $(\text{Lag}_i(\psi))_{1 \leq i \leq N}$
OT between a triangulation and a point cloud

Input:
- A prob. measure on a triangulation X in \mathbb{R}^d, $\mu = \sum \sigma \mu_\sigma$, where $\sigma = \text{triangle}$
- A prob. measure on a point cloud $Y \subset \mathbb{R}^d$, $\nu = \sum_{i=1}^{N} \nu_i \delta_{y_i}$

Output:
- Transport plan between μ and ν for quadratic cost \rightsquigarrow Laguerre cells $(\text{Lag}_i(\psi))_{1 \leq i \leq N}$

Question: can we use still use the Newton method to solve OT between μ and ν?
OT between a triangulation and a point cloud

Input:
- A prob. measure on a triangulation \(X \) in \(\mathbb{R}^d \), \(\mu = \sum \sigma \mu_{\sigma} \), where \(\sigma = \text{triangle} \)
- A prob. measure on a point cloud \(Y \subset \mathbb{R}^d \), \(\nu = \sum_{i=1}^{N} \nu_{i} \delta_{y_{i}} \)

Output:
- Transport plan between \(\mu \) and \(\nu \) for quadratic cost \(\leadsto \) Laguerre cells \((\text{Lag}_{i}(\psi))_{1 \leq i \leq N} \)

Question: can we use still use the Newton method to solve OT between \(\mu \) and \(\nu \)?

- \(\mu \) not AC anymore \(\implies \) Brenier's theorem does not apply anymore!
 \(\implies \) Optimal transport may not be unique or even exists
OT between a triangulation and a point cloud

Input:
- A prob. measure on a triangulation X in \mathbb{R}^d, $\mu = \sum_{\sigma} \mu_{\sigma}$, where $\sigma = \text{triangle}$
- A prob. measure on a point cloud $Y \subset \mathbb{R}^d$, $\nu = \sum_{i=1}^{N} \nu_i \delta_{y_i}$

Output:
- Transport plan between μ and ν for quadratic cost \leadsto Laguerre cells $(\text{Lag}_i(\psi))_{1 \leq i \leq N}$

Question: can we use still use the Newton method to solve OT between μ and ν?

- μ not AC anymore \implies Brenier's theorem does not apply anymore!
- \implies Optimal transport may not be unique or even exists

Solution: use a genericity assumption on the point cloud Y and regularity on μ
Main theorem

Theorem:
Assume μ is a regular simplicial measure

y_1, \cdots, y_N are in generic position

Then the damped Newton method converges with linear rate globally i.e.

$$\|G(\psi^k) - \nu\| \leq (1 - \tau^* k)\|G(\psi^0) - \nu\| \quad \text{where} \quad \tau^* \in]0, 1]$$

[Mérigot, M., Thibert, SIIMS '18]
Main theorem

Theorem:
Assume μ is a regular simplicial measure and y_1, \cdots, y_N are in generic position.
Then the damped Newton method converges with linear rate globally i.e.
\[
\|G(\psi^k) - \nu\| \leq (1 - \frac{\tau^*}{2})^k \|G(\psi^0) - \nu\| \text{ where } \tau^* \in]0, 1]\]

[Mérigot, M., Thibert, SIIMS '18]
Main theorem

Theorem: Assume μ is a regular simplicial measure and y_1, \cdots, y_N are in generic position. Then the damped Newton method converges with linear rate globally i.e.

$$\|G(\psi^k) - \nu\| \leq (1 - \frac{\tau^*}{2})^k \|G(\psi^0) - \nu\|$$

where $\tau^* \in]0, 1]$ [Mérigot, M., Thibert, SIIMS '18]

Genericity position: example of non-generic case, edge of $\sigma \perp (y_i y_j)$

$$\frac{\partial G_i}{\partial \psi_j}(\psi^1) \propto \mu(\partial \text{Lag}_i(\psi^1) \cap \sigma) > 0$$
Main theorem

Theorem:
Assume μ is a regular simplicial measure and y_1, \cdots, y_N are in generic position.

Then the damped Newton method converges with linear rate globally i.e.

$$\|G(\psi^k) - \nu\| \leq (1 - \frac{\tau^*}{2})^k \|G(\psi^0) - \nu\| \text{ where } \tau^* \in]0, 1]$$

Genericity position: example of non-generic case, edge of $\sigma \perp (y_i y_j)$

$$\text{Lag}_i(\psi^2) \quad \text{Lag}_j(\psi^2)$$

$$\frac{\partial G_i}{\partial \psi_j}(\psi^2) \propto \mu(\partial \text{Lag}_i(\psi^2) \cap \sigma) = 0$$

$$\implies G \text{ not } C^1$$
Numerical results

Optimal transport for a uniform source

Initial: ψ^0

Final
Numerical results

Optimal transport for a uniform source

Initial: ψ^0

Final
Numerical results

- Optimal quantization of a probability measure on a triangulated surface

- Remeshing with respect to a density μ (uniform, mean curvature)
Numerical results

- Optimal quantization of a probability measure on a triangulated surface

- Remeshing with respect to a density μ (uniform, mean curvature)
Overview

A. Optimal transport
 1. Generalities on optimal transport
 2. Semi-discrete optimal transport
 3. OT between a triangulation and a point cloud

B. Optimal transport and non-imaging optics
 1. Light Energy Conservation equation
 2. Generic and parameter-free algorithm
 3. Numerical results
Four non-imaging optics problems

Mirror \mathcal{R}

Collimated source

$\mathbb{R}^2 \times \{0\}$

Target light S^2
Four non-imaging optics problems

Mirror R

Collimated source

$R^2 \times \{0\}$

Target light

S^2

Lens R

Collimated source

$R^2 \times \{0\}$

S^2

Target light
Four non-imaging optics problems

- **Mirror \mathcal{R}**
 - Collimated source
 - Target light

- **Lens \mathcal{R}**
 - Collimated source
 - Target light

- **Point source**
 - Target light

- **Target light**
 - \mathbb{S}^2
 - $\mathbb{R}^2 \times \{0\}$
Four non-imaging optics problems

- **Collimated source**
 - Mirror \mathcal{R}
 - Target light
 - $\mathbb{R}^2 \times \{0\}$
 - \mathbb{S}^2

- **Point source**
 - Mirror \mathcal{R}
 - Target light
 - 0
 - \mathbb{S}^2

- **Collimated source**
 - Lens \mathcal{R}
 - Target light
 - $\mathbb{R}^2 \times \{0\}$
 - \mathbb{S}^2

- **Point source**
 - Lens \mathcal{R}
 - Target light
 - 0
 - \mathbb{S}^2
Four non-imaging optics problems

- **Collimated source**
 - **Mirror \mathcal{R}**
 - **Target light**

- **Point source**
 - **Mirror \mathcal{R}**
 - **Target light**

- **Collimated source**
 - **Lens \mathcal{R}**

- **Point source**
 - **Lens \mathcal{R}**

(concave too)
Mirror design for a collimated source

Input: collimated light source μ and target light at infinity $\nu = \sum_i \nu_i \delta y_i$

Goal: design a convex mirror \mathcal{R} that sends μ to ν
Mirror design for a collimated source

Input: collimated light source μ and target light at infinity $\nu = \sum_i \nu_i \delta_{y_i}$

Goal: design a convex mirror \mathcal{R} that sends μ to ν

1. **Discretization:** μ supported on a triangulation X and ν on a point cloud Y, where $y_i \in S^2$
Mirror design for a collimated source

Input: collimated light source μ and target light at infinity $\nu = \sum_i \nu_i \delta_{y_i}$

Goal: design a convex mirror R that sends μ to ν

2. R is convex and can be parametrized by $R_\psi(x) = (x, \max_{1\leq i\leq N} \langle x | p_i \rangle - \psi_i)$
Mirror design for a collimated source

Input: collimated light source μ and target light at infinity $\nu = \sum_i \nu_i \delta_{y_i}$

Goal: design a convex mirror \mathcal{R} that sends μ to ν

3. $V_i(\psi) = \{x \in X \mid x \text{ reflected towards } y_i\}$ and $G_i(\psi) = \mu(V_i(\psi))$

\mathcal{R}

X

$y_i \in S^2$

known slope unknown elevation
Mirror design for a collimated source

Input: collimated light source μ and target light at infinity $\nu = \sum_i \nu_i \delta_{y_i}$

Goal: design a convex mirror \mathcal{R} that sends μ to ν

3. $V_i(\psi) = \{x \in X \mid x \text{ reflected towards } y_i\}$ and $G_i(\psi) = \mu(V_i(\psi))$

Find $\psi \in \mathbb{R}^N$ such that $\forall i \in \{1, \ldots, N\}, \ G_i(\psi) = \nu_i$ (LEC)
Mirror design for a collimated source

Input: collimated light source μ and target light at infinity $\nu = \sum_i \nu_i \delta_{y_i}$

Goal: design a convex mirror R that sends μ to ν

4. $V_i(\psi) = \{x \in X \mid \forall j, -\langle x|p_i \rangle + \psi_i \leq -\langle x|p_j \rangle + \psi_j \} = \text{Lag}_i(\psi)$ for $c(x, p) = -\langle x|p \rangle$

Find $\psi \in \mathbb{R}^N$ such that $\forall i \in \{1, \ldots, N\}, G_i(\psi) = \nu_i$ (LEC)
Goal: solve (LEC) where

- $V_i(\psi)$ is a *Laguerre* cell \implies optimal transport problem for some cost c
- $X \subset \mathbb{R}^2 \times \{0\}$ for collimated lights and $X \subset \mathbb{S}^2$ for point lights
- \mathcal{R}_{ψ} is a parametrization of the component
 - *piecewise affine* function for mirror & lens / collimated light
 - *pieces of paraboloids* for mirror / point light
 - *pieces of ellipsoids* for lens / point light
Overview

A. Optimal transport
 1. Generalities on optimal transport
 2. Semi-discrete optimal transport
 3. OT between a triangulation and a point cloud

B. Optimal transport and non-imaging optics
 1. Light Energy Conservation equation
 2. Generic and parameter-free algorithm
 3. Numerical results
Generic algorithm

Algorithm: Mirror / lens construction

Input
- A light source X, μ
- A target light Y, ν
- A tolerance $\eta > 0$
- A parametrization function $\psi \mapsto \mathcal{R}_\psi$
- A transformation function $\tau : \text{Lag} \mapsto X \cap \text{Pow}$

Output
- A triangulation \mathcal{R}_T of a mirror or lens \mathcal{R}

depends on the optical design problem
Algorithm: Mirror / lens construction

Input
- A light source X, μ
- A target light Y, ν
- A tolerance $\eta > 0$
- A parametrization function $\psi \mapsto \mathcal{R}_\psi$
- A transformation function $\tau : \text{Lag} \mapsto X \cap \text{Pow}$

Output
- A triangulation \mathcal{R}_T of a mirror or lens \mathcal{R}

Step 1: Initialization

$\psi^0 \leftarrow \text{INITIAL}_\text{WEIGHTS}(Y)$ i.e. $\psi^0 \in E_\varepsilon$

depends on the optical design problem
Generic algorithm

Algorithm: Mirror / lens construction

Input
- A light source X, μ
- A target light Y, ν
- A tolerance $\eta > 0$
- A parametrization function $\psi \mapsto \mathcal{R}_\psi$
- A transformation function $\tau : \text{Lag} \mapsto X \cap \text{Pow}$

Output
- A triangulation \mathcal{R}_T of a mirror or lens \mathcal{R}

Step 1 Initialization

$\psi^0 \leftarrow \text{INITIAL_WEIGHTS}(Y)$ i.e. $\psi^0 \in E_\varepsilon$

Step 2 Solve $G(\psi) = \sigma$

$\psi \leftarrow \text{DAMPED_NEWTON}(X, \mu, Y, \nu, \psi^0, \eta, \tau)$

depends on the optical design problem
Generic algorithm

Algorithm: Mirror / lens construction

Input
- A light source X, μ
- A target light Y, ν
- A tolerance $\eta > 0$
- A parametrization function $\psi \mapsto R_\psi$
- A transformation function $\tau : \text{Lag} \mapsto X \cap \text{Pow}$

Output
- A triangulation R_T of a mirror or lens R

Step 1 Initialization
$\psi^0 \leftarrow \text{INITIAL_WEIGHTS}(Y)$ i.e. $\psi^0 \in E_\varepsilon$

Step 2 Solve $G(\psi) = \sigma$
$\psi \leftarrow \text{DAMPED_NEWTON}(X, \mu, Y, \nu, \psi^0, \eta, \tau)$

Step 3 Construct a triangulation R_T of R
$R_T \leftarrow \text{SURFACE_CONSTRUCTION}(\psi, R_\psi)$
Overview

A. Optimal transport
 1. Generalities on optimal transport
 2. Semi-discrete optimal transport
 3. OT between a triangulation and a point cloud

B. Optimal transport and non-imaging optics
 1. Light Energy Conservation equation
 2. Generic and parameter-free algorithm
 3. Numerical results
Numerical results: mirror design / collimated light

Target image: $N = 256 \times 256$ Diracs
Numerical results: mirror design / collimated light

Target image: $N = 256 \times 256$ Diracs

Mirror \mathcal{R}

Collimated source

$\mathbb{R}^2 \times \{0\}$

Target light S^2

Laguerre diagram and mesh

Reflected image
Numerical results: other settings

Collimated source

Target light

Lens \mathcal{R}

$\mathbb{R}^2 \times \{0\}$

Mirror \mathcal{R}

Point source

Target light

Lens \mathcal{R}

\mathbb{S}^2

Point source

\mathbb{S}^2

Target light

25
Numerical results: physical prototypes
Summary & Perspectives

- **Optimal transport** can be used to **unify** non-imaging optics problems.
- **Optimal transport** can be solved **very efficiently** using Newton algorithm.
Summary & Perspectives

- **Optimal transport** can be used to **unify** non-imaging optics problems
- **Optimal transport** can be solved **very efficiently** using Newton algorithm

Thank you for your attention