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Motivations: non-imaging optics

Goal: design optical components which transport light energy

Applications:

I car beam design (avoid blinding incoming cars)

I luminaire / caustic design (reduce light loss and light pollution)

1. Explain the strong link between optical component design and optimal transport

2. Discretize particular instances of optimal transport to solve these problems

We will:
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Introduction: imaging optics
Input: a source X, a target Y and a bijection f : X → Y

T : X → Y models the behaviour of the component when hit by a ray

Problem: Find S such that F (x, ~nS(x)) = f(x) for all x ∈ X

X

x Y

fS

Component (mirror) S = surface

T

We can assume T (x) = F (x, ~nS(x)) and F = Snell’s law

~nS y
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Introduction: non-imaging optics

I One approach: estimate f with a heuristic and integrate the normals ~nS

Possible idea: use optimal transport to determine f but still a heuristic

Non-imaging optics: the bijection f is not an input anymore

[Schwartzburg ’14, Feng, Froese, Liang ’16]

target positions with OT



4 - 3

Introduction: non-imaging optics

I One approach: estimate f with a heuristic and integrate the normals ~nS

Possible idea: use optimal transport to determine f but still a heuristic

Non-imaging optics: the bijection f is not an input anymore

[Schwartzburg ’14, Feng, Froese, Liang ’16]

target positions with OT



4 - 4

Introduction: non-imaging optics

I One approach: estimate f with a heuristic and integrate the normals ~nS

Possible idea: use optimal transport to determine f but still a heuristic

Non-imaging optics: the bijection f is not an input anymore

[Schwartzburg ’14, Feng, Froese, Liang ’16]

target positions with OT



4 - 5

Introduction: non-imaging optics

I One approach: estimate f with a heuristic and integrate the normals ~nS

Possible idea: use optimal transport to determine f but still a heuristic

Non-imaging optics: the bijection f is not an input anymore

I Example of a discretization of a non-imaging optics problem:



4 - 6

Introduction: non-imaging optics

I One approach: estimate f with a heuristic and integrate the normals ~nS

Possible idea: use optimal transport to determine f but still a heuristic

Non-imaging optics: the bijection f is not an input anymore

I Example of a discretization of a non-imaging optics problem:

S2

Targ
et

lig
ht

Mirror S

Collimated source

R2 × {0}
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Introduction: non-imaging optics

I One approach: estimate f with a heuristic and integrate the normals ~nS

Possible idea: use optimal transport to determine f but still a heuristic

Non-imaging optics: the bijection f is not an input anymore

I Example of a discretization of a non-imaging optics problem:

=⇒ Goal: prescribe areas of facets ≈ reflected intensity in a direction

mirror S

light source

y
x

(x, 〈x|p(y)〉 − ψ(y))
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Introduction: non-imaging optics

I One approach: estimate f with a heuristic and integrate the normals ~nS

Possible idea: use optimal transport to determine f but still a heuristic

Non-imaging optics: the bijection f is not an input anymore

I Example of a discretization of a non-imaging optics problem:

=⇒ Goal: prescribe areas of facets ≈ reflected intensity in a direction

Observation: ψ = dual variable in an optimal transport problem

=⇒ dual variable gives a parametrization of the mirror S

mirror S

light source

y
x

(x, 〈x|p(y)〉 − ψ(y))
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Introduction: non-imaging optics

I One approach: estimate f with a heuristic and integrate the normals ~nS

Possible idea: use optimal transport to determine f but still a heuristic

I We focus on semi-discrete optimal transport:

Non-imaging optics: the bijection f is not an input anymore

I Example of a discretization of a non-imaging optics problem:

I Efficient numerical methods

I Regularity of the solutions: convexity =⇒ important for the fabrication
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Overview

B. Optimal transport and non-imaging optics
1. Light Energy Conservation equation

2. Generic and parameter-free algorithm

3. Numerical results

A. Optimal transport
1. Generalities on optimal transport
2. Semi-discrete optimal transport

3. OT between a triangulation and a point cloud
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Optimal transport: introduction

Goal: Find a mass-preserving mapping T : X → Y between two probability
measures µ and ν minimizing a transport cost c
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Optimal transport: introduction

Goal: Find a mass-preserving mapping T : X → Y between two probability
measures µ and ν minimizing a transport cost c

Monge formulation: minimize
∫
X
c(x, T (x)) dµ(x)

where T is a transport map between µ and ν (M)

Definition: T is a transport map between µ and ν if

T#µ = ν meaning ∀A ⊂ Y, µ(T−1(A)) = ν(A)
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Optimal transport: applications

Applications:

OT provides a means to measure distances between measures
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Optimal transport: applications

Applications:

I Interpolation between surfaces

OT provides a means to measure distances between measures

[Lévy et al ’17]
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Optimal transport: applications

Applications:

I Interpolation between surfaces

I Inverse problems: reconstruction of the early universe, shape matching...

OT provides a means to measure distances between measures

[Brenier et al ’03 (pictures by B. Lévy)]

[Feydy et al ’17]
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Optimal transport: applications

Applications:

I Interpolation between surfaces

I Inverse problems: reconstruction of the early universe, shape matching...

I Partial differential equations: fluid mechanics...

OT provides a means to measure distances between measures

[de Goes et al ’15]
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Kantorovich relaxation

I Monge formulation: no solutions even for simple problems and non-linear

=⇒ idea: replace the transport map T by a probability measure γ on X×Y
=⇒ transport plan γ(A×B) = amount of mass moved from A to B

minimize
∫
X
c(x, T (x)) dµ(x) : T transport map between µ and ν (M)
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Kantorovich formulation: minimize
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X×Y c(x, y) d γ(x, y)

=⇒ linear programming problem with convex constraints =⇒ existence of solutions

where γ ∈ Prob(X × Y ) such that (PX)#γ = µ and (PY )#γ = ν (K)

=⇒ idea: replace the transport map T by a probability measure γ on X×Y
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X
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Kantorovich relaxation

I Monge formulation: no solutions even for simple problems and non-linear

Kantorovich formulation: minimize
∫
X×Y c(x, y) d γ(x, y)

=⇒ linear programming problem with convex constraints =⇒ existence of solutions

where γ ∈ Prob(X × Y ) such that (PX)#γ = µ and (PY )#γ = ν (K)

=⇒ idea: replace the transport map T by a probability measure γ on X×Y
=⇒ transport plan γ(A×B) = amount of mass moved from A to B

Dual problem: maximize
∫
X
φ(x) dµ(x)−

∫
Y
ψ(y) d ν(y)

where φ ∈ C0(X), ψ ∈ C0(Y ) and φ(x)− ψ(y) ≤ c(x, y)
(K∗)

I We introduce: ψc(x) = inf
y∈Y

[c(x, y) + ψ(y)] to remove the constraint

maximize
∫
X
ψc(x) dµ(x)−

∫
Y
ψ(y) d ν(y) where ψ ∈ C0(Y ) (K∗∗)

minimize
∫
X
c(x, T (x)) dµ(x) : T transport map between µ and ν (M)



9

Overview

B. Optimal transport and non-imaging optics
1. Light Energy Conservation equation

2. Generic and parameter-free algorithm

3. Numerical results

A. Optimal transport
1. Generalities on optimal transport
2. Semi-discrete optimal transport

3. OT between a triangulation and a point cloud
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Setting

Input: µ probability measure on X and ν =
∑N
i=1 νiδyi on Y = {y1, . . . , yN}

Finding optimal transport between µ and ν:

yi

Y

X

maximize Φ(ψ) :=
∫
X

inf1≤i≤N (c(x, yi) + ψi) dµ(x)−
∑N
i=1 νiψi (K∗∗)

Φ is called the Kantorovich functional
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Setting

Input: µ probability measure on X and ν =
∑N
i=1 νiδyi on Y = {y1, . . . , yN}

Finding optimal transport between µ and ν:

yi

Y

X

(K∗∗)

Φ is called the Kantorovich functional
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Setting

Input: µ probability measure on X and ν =
∑N
i=1 νiδyi on Y = {y1, . . . , yN}

Finding optimal transport between µ and ν:

yi

Y

X

(K∗∗)

Φ is called the Kantorovich functional

x
Tψ

Lagi(ψ)

Definition: Laguerre cell of yi: Lagi(ψ) = {x ∈ X | ∀j, c(x, yi) + ψi ≤ c(x, yj) + ψj}

Definition: For ψ ∈ RN , we define Tψ : x ∈ X 7→ argmin1≤i≤N (c(x, yi) +ψi) ∈ Y

maximize Φ(ψ) :=
∫
X

∑N
i=1

∫
Lagi(ψ)

(c(x, yi) + ψi) dµ(x)−
∑N
i=1 νiψi
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Discrete Monge-Ampère equation

Theorem: Regularity of Φ

If µ is AC and verifies the (Neg) condition, then Φ is concave and C1 and

∂Φ
∂ψi

(ψ) = Gi(ψ)− νi where Gi(ψ) := µ(Lagi(ψ))

Corollary: Tψ is an optimal transport map between µ and ν

Recall: Φ(ψ) =
∑N
i=1

∫
Lagi(ψ)

(c(x, yi) + ψi) dµ(x)−
∑N
i=1 νiψi

⇐⇒ ψ is a maximizer of Φ

⇐⇒ ∇Φ(ψ) = 0

⇐⇒ ∀i ∈ {1, . . . , N}, Gi(ψ) = νi (DMA)
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Discrete Monge-Ampère equation

Theorem: Regularity of Φ

If µ is AC and verifies the (Neg) condition, then Φ is concave and C1 and

∂Φ
∂ψi

(ψ) = Gi(ψ)− νi where Gi(ψ) := µ(Lagi(ψ))

Corollary: Tψ is an optimal transport map between µ and ν

Recall: Φ(ψ) =
∑N
i=1

∫
Lagi(ψ)

(c(x, yi) + ψi) dµ(x)−
∑N
i=1 νiψi

⇐⇒ ψ is a maximizer of Φ

⇐⇒ ∇Φ(ψ) = 0

⇐⇒ ∀i ∈ {1, . . . , N}, Gi(ψ) = νi (DMA)

Numerical methods?
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Damped Newton Algorithm: description

Recall: G : ψ ∈ RN 7→ (µ(Lagi(ψ)))1≤i≤N ∈ RN

Admissible domain: Eε := {ψ ∈ RN | ∀i, Gi(ψ) ≥ ε}

ρ(Lagi(ψ)) ≥ ε

[Mirebeau ’15]
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Damped Newton Algorithm: description

Damped Newton algorithm for solving (DMA)

Recall: G : ψ ∈ RN 7→ (µ(Lagi(ψ)))1≤i≤N ∈ RN

Input: ψ0 ∈ RN s.t. ε := 1
2 min1≤i≤N min(Gi(ψ

0), νi) > 0

Admissible domain: Eε := {ψ ∈ RN | ∀i, Gi(ψ) ≥ ε}

ρ(Lagi(ψ)) ≥ ε

[Mirebeau ’15]
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Damped Newton Algorithm: description

Loop: −→ Compute Newton direction: vk := −DG(ψk)+(G(ψk)− ν)

Damped Newton algorithm for solving (DMA)

Recall: G : ψ ∈ RN 7→ (µ(Lagi(ψ)))1≤i≤N ∈ RN

−→ Choose ` so that ψk+1 := ψk + 2−`vk ∈ Eε

Input: ψ0 ∈ RN s.t. ε := 1
2 min1≤i≤N min(Gi(ψ

0), νi) > 0

Admissible domain: Eε := {ψ ∈ RN | ∀i, Gi(ψ) ≥ ε}

ρ(Lagi(ψ)) ≥ ε

and ‖G(ψk+1)− ν‖ ≤ (1− 2(`+1))‖G(ψk)− ν‖
[Mirebeau ’15]

Damping
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Damped Newton Algorithm: description

Loop: −→ Compute Newton direction: vk := −DG(ψk)+(G(ψk)− ν)

Damped Newton algorithm for solving (DMA)

Recall: G : ψ ∈ RN 7→ (µ(Lagi(ψ)))1≤i≤N ∈ RN

−→ Choose ` so that ψk+1 := ψk + 2−`vk ∈ Eε

Input: ψ0 ∈ RN s.t. ε := 1
2 min1≤i≤N min(Gi(ψ

0), νi) > 0

Admissible domain: Eε := {ψ ∈ RN | ∀i, Gi(ψ) ≥ ε}

ρ(Lagi(ψ)) ≥ ε

and ‖G(ψk+1)− ν‖ ≤ (1− 2(`+1))‖G(ψk)− ν‖
[Mirebeau ’15]

Damping

=⇒ Convergence when X is a triangulated surface?
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Overview

B. Optimal transport and non-imaging optics
1. Light Energy Conservation equation

2. Generic and parameter-free algorithm

3. Numerical results

A. Optimal transport
1. Generalities on optimal transport
2. Semi-discrete optimal transport

3. OT between a triangulation and a point cloud
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OT between a triangulation and a point cloud
Input:

I A prob. measure on a triangulation X in Rd, µ =
∑
σ µσ, where σ = triangle

I A prob. measure on a point cloud Y ⊂ Rd, ν =
∑N
i=1 νiδyi
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OT between a triangulation and a point cloud
Input:

I A prob. measure on a triangulation X in Rd, µ =
∑
σ µσ, where σ = triangle

I A prob. measure on a point cloud Y ⊂ Rd, ν =
∑N
i=1 νiδyi

Output:

I Transport plan between µ and ν for quadratic cost  Laguerre cells (Lagi(ψ))1≤i≤N

I µ not AC anymore =⇒ Brenier’s theorem does not apply anymore!

Question: can we use still use the Newton method to solve OT between µ and ν?

=⇒ Optimal transport may not be unique or even exists

Solution: use a genericity assumption on the point cloud Y and regularity on µ
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Main theorem

Theorem:

Then the damped Newton method converges with linear rate globally i.e.

y1, · · · , yN are in generic position

Assume µ is a regular simplicial measure

‖G(ψk)− ν‖ ≤ (1− τ∗

2 )k‖G(ψ0)− ν‖ where τ∗ ∈]0, 1]

[Mérigot, M., Thibert, SIIMS ’18]



15 - 2

Main theorem

Theorem:

Then the damped Newton method converges with linear rate globally i.e.

y1, · · · , yN are in generic position

Assume µ is a regular simplicial measure

‖G(ψk)− ν‖ ≤ (1− τ∗

2 )k‖G(ψ0)− ν‖ where τ∗ ∈]0, 1]
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Theorem:

Then the damped Newton method converges with linear rate globally i.e.

y1, · · · , yN are in generic position

Assume µ is a regular simplicial measure

‖G(ψk)− ν‖ ≤ (1− τ∗

2 )k‖G(ψ0)− ν‖ where τ∗ ∈]0, 1]

[Mérigot, M., Thibert, SIIMS ’18]

Genericity position: example of non-generic case, edge of σ ⊥ (yiyj)

yi

∂Gi

∂ψj
(ψ1) ∝ µ(∂ Lagi(ψ

1) ∩ σ) > 0

yj

σLagi(ψ
1)
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Main theorem

Theorem:

Then the damped Newton method converges with linear rate globally i.e.

y1, · · · , yN are in generic position

Assume µ is a regular simplicial measure

‖G(ψk)− ν‖ ≤ (1− τ∗

2 )k‖G(ψ0)− ν‖ where τ∗ ∈]0, 1]

[Mérigot, M., Thibert, SIIMS ’18]

Genericity position: example of non-generic case, edge of σ ⊥ (yiyj)

yi yj

σLagi(ψ
2)

∂Gi

∂ψj
(ψ2) ∝ µ(∂ Lagi(ψ

2) ∩ σ) = 0

=⇒ G not C1
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Numerical results

Optimal transport for a uniform source

Initial: ψ0 Final
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Numerical results

Optimal transport for a uniform source

Initial: ψ0 Final



16 - 3

Numerical results

I Optimal quantization of a probability measure on a triangulated surface

I Remeshing with respect to a density µ (uniform, mean curvature)
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Numerical results

I Optimal quantization of a probability measure on a triangulated surface

I Remeshing with respect to a density µ (uniform, mean curvature)
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B. Optimal transport and non-imaging optics
1. Light Energy Conservation equation

2. Generic and parameter-free algorithm

3. Numerical results

A. Optimal transport
1. Generalities on optimal transport
2. Semi-discrete optimal transport

3. OT between a triangulation and a point cloud
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Four non-imaging optics problems
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Four non-imaging optics problems

Point source

R2 × {0}
Collimated source

S2 Target light

Lens R

S2

Targ
et

lig
ht

Mirror R

0

Point source

S2 Target light

Lens R

0

S2

Targ
et

lig
ht

Mirror R

Collimated source

R2 × {0}

concave too
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Mirror design for a collimated source

Input: collimated light source µ and target light at infinity ν =
∑
i νiδyi

Goal: design a convex mirror R that sends µ to ν
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Mirror design for a collimated source

Input: collimated light source µ and target light at infinity ν =
∑
i νiδyi

Goal: design a convex mirror R that sends µ to ν

1. Discretization: µ supported on a triangulation X and ν on a point cloud Y

yi ∈ S2

R

X
x
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Mirror design for a collimated source

Input: collimated light source µ and target light at infinity ν =
∑
i νiδyi

Goal: design a convex mirror R that sends µ to ν

yi ∈ S2

R

X

2. R is convex and can be parametrized by Rψ(x) = (x, max
1≤i≤N

〈x|pi〉 − ψi)

x 7→ 〈x|pi〉 − ψi

x
unknown elevationknown slope
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Mirror design for a collimated source

Input: collimated light source µ and target light at infinity ν =
∑
i νiδyi

Goal: design a convex mirror R that sends µ to ν

yi ∈ S2

R

X

x 7→ 〈x|pi〉 − ψi

3. Vi(ψ) = {x ∈ X | x reflected towards yi} and Gi(ψ) = µ(Vi(ψ))

x
unknown elevationknown slope
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Mirror design for a collimated source

Input: collimated light source µ and target light at infinity ν =
∑
i νiδyi

Goal: design a convex mirror R that sends µ to ν

yi ∈ S2

R

X

x 7→ 〈x|pi〉 − ψi

3. Vi(ψ) = {x ∈ X | x reflected towards yi} and Gi(ψ) = µ(Vi(ψ))

Find ψ ∈ RN such that ∀i ∈ {1, . . . , N}, Gi(ψ) = νi (LEC)

x
unknown elevationknown slope



19 - 6

Mirror design for a collimated source

Input: collimated light source µ and target light at infinity ν =
∑
i νiδyi

Goal: design a convex mirror R that sends µ to ν

yi ∈ S2

R

X

x 7→ 〈x|pi〉 − ψi

Find ψ ∈ RN such that ∀i ∈ {1, . . . , N}, Gi(ψ) = νi (LEC)

x
unknown elevationknown slope

4. Vi(ψ) = {x ∈ X | ∀j, −〈x|pi〉+ψi ≤ −〈x|pj〉+ψj} = Lagi(ψ) for c(x, p) = −〈x|p〉
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Light Energy Conservation equation

Goal: solve (LEC) where

I X ⊂ R2 × {0} for collimated lights and X ⊂ S2 for point lights

I Rψ is a parametrization of the component

I piecewise affine function for mirror & lens / collimated light

I pieces of paraboloids for mirror / point light

I pieces of ellipsoids for lens / point light

Mirror / collimated light Mirror / point light

I Vi(ψ) is a Laguerre cell =⇒ optimal transport problem for some cost c

Vi(ψ) S2
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Overview

B. Optimal transport and non-imaging optics
1. Light Energy Conservation equation

2. Generic and parameter-free algorithm

3. Numerical results

A. Optimal transport
1. Generalities on optimal transport
2. Semi-discrete optimal transport

3. OT between a triangulation and a point cloud



22 - 1

Generic algorithm

Algorithm: Mirror / lens construction

Input A light source X,µ

A target light Y, ν

A tolerance η > 0

Output A triangulation RT of a mirror or lens ROutput A triangulation RT of a mirror or lens R

A parametrization function ψ 7→ Rψ
A transformation function τ : Lag 7→ X ∩ Pow

depends on the optical design problem
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Input A light source X,µ

A target light Y, ν

A tolerance η > 0

Output A triangulation RT of a mirror or lens R
Initialization

Solve G(ψ) = σ
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Numerical results: mirror design / collimated light

Target image: N = 256× 256 Diracs

S2
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Collimated source

R2 × {0}



24 - 2

Numerical results: mirror design / collimated light

Target image: N = 256× 256 Diracs

S2
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Mirror R

Collimated source

R2 × {0}

Reflected imageLaguerre diagram and mesh
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Numerical results: other settings

R2 × {0}
Collimated source

S2 Target light

Lens R

Point source

S2

Targ
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Mirror R

0

Point source

S2 Target light

Lens R
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Numerical results: physical prototypes
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Summary & Perspectives

I Optimal transport can be used to unify non-imaging optics problems

I Optimal transport can be solved very efficiently using Newton algorithm
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Summary & Perspectives

Thank you for your attention

I Optimal transport can be used to unify non-imaging optics problems

I Optimal transport can be solved very efficiently using Newton algorithm


