Semi-discrete optimal transport and applications to non-imaging optics

Jocelyn Meyron, Université Grenoble Alpes, LJK PhD students' seminar, October 25th 2018

Motivations: non-imaging optics

Goal: design optical components which *transport* light energy

Motivations: non-imaging optics

Goal: design optical components which *transport* light energy

Applications:

- car beam design (avoid blinding incoming cars)
- Iuminaire / caustic design (reduce light loss and light pollution)

Motivations: non-imaging optics

Goal: design optical components which *transport* light energy

Applications:

- car beam design (avoid blinding incoming cars)
- Iuminaire / caustic design (reduce light loss and light pollution)

We will:

- 1. Explain the **strong** link between optical component design and optimal transport
- 2. Discretize particular instances of optimal transport to solve these problems

Input: a source X, a target Y and a bijection $f: X \to Y$

Input: a source X, a target Y and a bijection $f : X \to Y$ Component (mirror) S = surface

Input: a source X, a target Y and a bijection $f : X \to Y$

Component (mirror) S = surface

 $T:X\to Y$ models the behaviour of the component when hit by a ray

We can assume $T(x) = F(x, \vec{n_S}(x))$ and F =Snell's law

Input: a source X, a target Y and a bijection $f: X \to Y$

Component (mirror) S = surface

 $T:X\to Y$ models the behaviour of the component when hit by a ray

We can assume $T(x) = F(x, \vec{n_S}(x))$ and F =Snell's law

Problem: Find S such that $F(x, \vec{n_S}(x)) = f(x)$ for all $x \in X$

Non-imaging optics: the bijection f is not an input anymore

Non-imaging optics: the bijection f is not an input anymore

• One approach: estimate f with a heuristic and integrate the normals $\vec{n_S}$ Possible idea: use **optimal transport** to determine f but still a heuristic

[Schwartzburg '14, Feng, Froese, Liang '16]

Non-imaging optics: the bijection f is not an input anymore

• One approach: estimate f with a heuristic and integrate the normals $\vec{n_S}$ Possible idea: use **optimal transport** to determine f but still a heuristic

[Schwartzburg '14, Feng, Froese, Liang '16]

Non-imaging optics: the bijection f is not an input anymore

• One approach: estimate f with a heuristic and integrate the normals $\vec{n_S}$ Possible idea: use **optimal transport** to determine f but still a heuristic

[Schwartzburg '14, Feng, Froese, Liang '16]

Non-imaging optics: the bijection *f* is not an input anymore

- One approach: estimate f with a heuristic and integrate the normals $\vec{n_S}$ Possible idea: use **optimal transport** to determine f but still a heuristic
- Example of a discretization of a non-imaging optics problem:

Non-imaging optics: the bijection f is not an input anymore

- One approach: estimate f with a heuristic and integrate the normals $\vec{n_S}$ Possible idea: use **optimal transport** to determine f but still a heuristic
- Example of a discretization of a non-imaging optics problem:

Non-imaging optics: the bijection f is not an input anymore

- One approach: estimate f with a heuristic and integrate the normals $\vec{n_S}$ Possible idea: use **optimal transport** to determine f but still a heuristic
- Example of a discretization of a non-imaging optics problem:

 \implies Goal: prescribe areas of facets \approx reflected intensity in a direction

Non-imaging optics: the bijection f is not an input anymore

- One approach: estimate f with a heuristic and integrate the normals $\vec{n_S}$ Possible idea: use **optimal transport** to determine f but still a heuristic
- Example of a discretization of a non-imaging optics problem:

 \implies Goal: prescribe areas of facets pprox reflected intensity in a direction

Observation: $\psi =$ **dual variable** in an *optimal transport* problem

 \implies dual variable gives a **parametrization** of the mirror S

Non-imaging optics: the bijection f is not an input anymore

- One approach: estimate f with a heuristic and integrate the normals $\vec{n_S}$ Possible idea: use **optimal transport** to determine f but still a heuristic
- Example of a discretization of a non-imaging optics problem:
- ► We focus on **semi-discrete** optimal transport:
 - Efficient numerical methods
 - \blacktriangleright Regularity of the solutions: **convexity** \implies important for the fabrication

<u>Overview</u>

A. Optimal transport

- 1. Generalities on optimal transport
- 2. Semi-discrete optimal transport
- 3. OT between a triangulation and a point cloud
- B. Optimal transport and non-imaging optics
 - 1. Light Energy Conservation equation
 - 2. Generic and parameter-free algorithm
 - 3. Numerical results

Optimal transport: introduction

Goal: Find a mass-preserving mapping $T: X \to Y$ between two probability measures μ and ν minimizing a transport cost c

Optimal transport: introduction

Goal: Find a mass-preserving mapping $T: X \to Y$ between two probability measures μ and ν minimizing a transport cost c

Definition: T is a **transport map** between μ and ν if $T_{\#}\mu = \nu$ meaning $\forall A \subset Y, \ \mu(T^{-1}(A)) = \nu(A)$

Monge formulation: minimize $\int_X c(x, T(x)) d \mu(x)$ where T is a transport map between μ and ν (M)

OT provides a means to measure **distances** between measures

Applications:

OT provides a means to measure **distances** between measures

Applications:

Interpolation between surfaces

[Lévy et al '17]

OT provides a means to measure **distances** between measures

Applications:

- Interpolation between surfaces
- Inverse problems: reconstruction of the early universe, shape matching...

[Brenier et al '03 (pictures by B. Lévy)]

OT provides a means to measure **distances** between measures

Applications:

- Interpolation between surfaces
- Inverse problems: reconstruction of the early universe, shape matching...
- Partial differential equations: fluid mechanics...

minimize $\int_X c(x, T(x)) d\mu(x) : T$ transport map between μ and ν

(M)

- Monge formulation: no solutions even for simple problems and non-linear
 - \implies idea: replace the transport map T by a probability measure γ on $X \times Y$
 - \implies transport plan $\gamma(A\times B)=$ amount of mass moved from A to B

minimize $\int_{X} c(x, T(x)) d\mu(x) : T$ transport map between μ and ν

(M)

(K)

- Monge formulation: no solutions even for simple problems and non-linear
 - \implies idea: replace the transport map T by a probability measure γ on $X \times Y$
 - \implies transport plan $\gamma(A\times B)=$ amount of mass moved from A to B

Kantorovich formulation: minimize $\int_{X \times Y} c(x, y) d\gamma(x, y)$ where $\gamma \in \operatorname{Prob}(X \times Y)$ such that $(P_X)_{\#}\gamma = \mu$ and $(P_Y)_{\#}\gamma = \nu$

 \implies linear programming problem with convex constraints \implies existence of solutions

(M)

minimize $\int_{X} c(x, T(x)) d\mu(x) : T$ transport map between μ and ν

• Monge formulation: no solutions even for simple problems and non-linear \implies idea: replace the transport map T by a probability measure γ on $X \times Y$

 \implies transport plan $\gamma(A\times B)=$ amount of mass moved from A to B

Kantorovich formulation: minimize $\int_{X \times Y} c(x, y) d\gamma(x, y)$ where $\gamma \in \operatorname{Prob}(X \times Y)$ such that $(P_X)_{\#}\gamma = \mu$ and $(P_Y)_{\#}\gamma = \nu$ (K)

 \implies linear programming problem with convex constraints \implies existence of solutions

Dual problem: maximize $\int_X \phi(x) d\mu(x) - \int_Y \psi(y) d\nu(y)$ where $\phi \in C^0(X)$, $\psi \in C^0(Y)$ and $\phi(x) - \psi(y) \le c(x, y)$ (K*)

minimize $\int_X c(x, T(x)) d\mu(x) : T$ transport map between μ and ν

• Monge formulation: no solutions even for simple problems and non-linear \implies idea: replace the transport map T by a probability measure γ on $X \times Y$

 \implies transport plan $\gamma(A\times B)=$ amount of mass moved from A to B

Kantorovich formulation: minimize $\int_{X \times Y} c(x, y) d\gamma(x, y)$ where $\gamma \in \operatorname{Prob}(X \times Y)$ such that $(P_X)_{\#}\gamma = \mu$ and $(P_Y)_{\#}\gamma = \nu$ (K)

 \implies linear programming problem with convex constraints \implies existence of solutions

Dual problem: maximize $\int_X \phi(x) d\mu(x) - \int_Y \psi(y) d\nu(y)$ where $\phi \in \mathcal{C}^0(X)$, $\psi \in \mathcal{C}^0(Y)$ and $\phi(x) - \psi(y) \leq c(x, y)$ (K*)

• We introduce:
$$\psi^c(x) = \inf_{y \in Y} [c(x, y) + \psi(y)]$$
 to remove the constraint

maximize $\int_X \psi^c(x) d\mu(x) - \int_Y \psi(y) d\nu(y)$ where $\psi \in \mathcal{C}^0(Y)$

(M)

<u>Overview</u>

A. Optimal transport

- 1. Generalities on optimal transport
- 2. Semi-discrete optimal transport
- 3. OT between a triangulation and a point cloud
- B. Optimal transport and non-imaging optics
 - 1. Light Energy Conservation equation
 - 2. Generic and parameter-free algorithm
 - 3. Numerical results

Input: μ probability measure on X and $\nu = \sum_{i=1}^{N} \nu_i \delta_{y_i}$ on $Y = \{y_1, \dots, y_N\}$

Finding optimal transport between μ and ν :

maximize
$$\Phi(\psi) := \int_X \inf_{1 \le i \le N} (c(x, y_i) + \psi_i) d\mu(x) - \sum_{i=1}^N \nu_i \psi_i$$
 (K**)

Φ is called the Kantorovich functional

Input: μ probability measure on X and $\nu = \sum_{i=1}^{N} \nu_i \delta_{y_i}$ on $Y = \{y_1, \dots, y_N\}$

 Φ is called the Kantorovich functional

Input: μ probability measure on X and $\nu = \sum_{i=1}^{N} \nu_i \delta_{y_i}$ on $Y = \{y_1, \dots, y_N\}$

Definition: Laguerre cell of y_i : Lag_i $(\psi) = \{x \in X \mid \forall j, c(x, y_i) + \psi_i \le c(x, y_j) + \psi_j\}$

Input: μ probability measure on X and $\nu = \sum_{i=1}^{N} \nu_i \delta_{y_i}$ on $Y = \{y_1, \dots, y_N\}$

maximize
$$\Phi(\psi) := \int_X \sum_{i=1}^N \int_{\text{Lag}_i(\psi)} (c(x, y_i) + \psi_i) \, \mathrm{d}\,\mu(x) - \sum_{i=1}^N \nu_i \psi_i \quad (K^{**})$$

Φ is called the Kantorovich functional

Definition: Laguerre cell of y_i : Lag_i $(\psi) = \{x \in X \mid \forall j, c(x, y_i) + \psi_i \le c(x, y_j) + \psi_j\}$

Input: μ probability measure on X and $\nu = \sum_{i=1}^{N} \nu_i \delta_{y_i}$ on $Y = \{y_1, \dots, y_N\}$

maximize
$$\Phi(\psi) := \int_X \sum_{i=1}^N \int_{\text{Lag}_i(\psi)} (c(x, y_i) + \psi_i) \, \mathrm{d}\,\mu(x) - \sum_{i=1}^N \nu_i \psi_i \quad (K^{**})$$

Φ is called the Kantorovich functional

Definition: Laguerre cell of y_i : Lag_i $(\psi) = \{x \in X \mid \forall j, c(x, y_i) + \psi_i \le c(x, y_j) + \psi_j\}$

Definition: For $\psi \in \mathbb{R}^N$, we define $T_{\psi} : x \in X \mapsto \operatorname{argmin}_{1 \leq i \leq N}(c(x, y_i) + \psi_i) \in Y$

Discrete Monge-Ampère equation

Recall:
$$\Phi(\psi) = \sum_{i=1}^{N} \int_{\text{Lag}_i(\psi)} (c(x, y_i) + \psi_i) \, \mathrm{d} \, \mu(x) - \sum_{i=1}^{N} \nu_i \psi_i$$

Theorem: Regularity of Φ

If μ is AC and verifies the (Neg) condition, then Φ is concave and \mathcal{C}^1 and

$$\frac{\partial \Phi}{\partial \psi_i}(\psi) = G_i(\psi) - \nu_i$$
 where $G_i(\psi) := \mu(\operatorname{Lag}_i(\psi))$

Corollary: T_{ψ} is an optimal transport map between μ and ν $\iff \psi$ is a maximizer of Φ $\iff \nabla \Phi(\psi) = 0$ $\iff \forall i \in \{1, \dots, N\}, \ G_i(\psi) = \nu_i$ (DMA)

Discrete Monge-Ampère equation

Recall:
$$\Phi(\psi) = \sum_{i=1}^{N} \int_{\text{Lag}_i(\psi)} (c(x, y_i) + \psi_i) \, \mathrm{d} \, \mu(x) - \sum_{i=1}^{N} \nu_i \psi_i$$

Theorem: Regularity of Φ

If μ is AC and verifies the (Neg) condition, then Φ is concave and \mathcal{C}^1 and

$$\frac{\partial \Phi}{\partial \psi_i}(\psi) = G_i(\psi) - \nu_i$$
 where $G_i(\psi) := \mu(\operatorname{Lag}_i(\psi))$

Corollary: T_{ψ} is an optimal transport map between μ and ν $\iff \psi$ is a maximizer of Φ $\iff \nabla \Phi(\psi) = 0$ $\iff \forall i \in \{1, \dots, N\}, \ G_i(\psi) = \nu_i$ (DMA)

Numerical methods?
$\rho(\operatorname{Lag}_i(\psi)) \ge \varepsilon$

Recall: $G: \psi \in \mathbb{R}^N \mapsto (\mu(\operatorname{Lag}_i(\psi)))_{1 \le i \le N} \in \mathbb{R}^N$ **Admissible domain:** $E_{\varepsilon} := \{\psi \in \mathbb{R}^N \mid \forall i, \ G_i(\psi) \ge \varepsilon\}$

[Mirebeau '15]

Recall: $G: \psi \in \mathbb{R}^N \mapsto (\mu(\operatorname{Lag}_i(\psi)))_{1 \le i \le N} \in \mathbb{R}^N$ **Admissible domain:** $E_{\varepsilon} := \{\psi \in \mathbb{R}^N \mid \forall i, \ G_i(\psi) \ge \varepsilon\}$

 $\rho(\operatorname{Lag}_i(\psi)) \ge \varepsilon$

Damped Newton algorithm for solving (DMA)

Input: $\psi^0 \in \mathbb{R}^N$ s.t. $\varepsilon := \frac{1}{2} \min_{1 \le i \le N} \min(G_i(\psi^0), \nu_i) > 0$

[Mirebeau '15]

Recall: $G: \psi \in \mathbb{R}^N \mapsto (\mu(\operatorname{Lag}_i(\psi)))_{1 \le i \le N} \in \mathbb{R}^N$ **Admissible domain:** $E_{\varepsilon} := \{\psi \in \mathbb{R}^N \mid \forall i, \ G_i(\psi) \ge \varepsilon\}$

 $\rho(\operatorname{Lag}_i(\psi)) \ge \varepsilon$

Damped Newton algorithm for solving (DMA) Input: $\psi^0 \in \mathbb{R}^N$ s.t. $\varepsilon := \frac{1}{2} \min_{1 \le i \le N} \min(G_i(\psi^0), \nu_i) > 0$ Loop: \longrightarrow Compute Newton direction: $v^k := -DG(\psi^k)^+(G(\psi^k) - \nu)$ \longrightarrow Choose ℓ so that $\psi^{k+1} := \psi^k + 2^{-\ell}v_k \in E_{\varepsilon}$ Damping and $||G(\psi^{k+1}) - \nu|| \le (1 - 2^{(\ell+1)})||G(\psi^k) - \nu||$ [Mirebeau '15]

Recall: $G: \psi \in \mathbb{R}^N \mapsto (\mu(\operatorname{Lag}_i(\psi)))_{1 \le i \le N} \in \mathbb{R}^N$ **Admissible domain:** $E_{\varepsilon} := \{\psi \in \mathbb{R}^N \mid \forall i, \ G_i(\psi) \ge \varepsilon\}$

 $\rho(\operatorname{Lag}_i(\psi)) \ge \varepsilon$

Damped Newton algorithm for solving (DMA) Input: $\psi^0 \in \mathbb{R}^N$ s.t. $\varepsilon := \frac{1}{2} \min_{1 \le i \le N} \min(G_i(\psi^0), \nu_i) > 0$ Loop: \longrightarrow Compute Newton direction: $v^k := -DG(\psi^k)^+(G(\psi^k) - \nu)$ \longrightarrow Choose ℓ so that $\psi^{k+1} := \psi^k + 2^{-\ell}v_k \in E_{\varepsilon}$ Damping and $||G(\psi^{k+1}) - \nu|| \le (1 - 2^{(\ell+1)})||G(\psi^k) - \nu||$ [Mirebeau '15]

 \implies Convergence when X is a triangulated surface?

<u>Overview</u>

A. Optimal transport

- 1. Generalities on optimal transport
- 2. Semi-discrete optimal transport
- 3. OT between a triangulation and a point cloud
- B. Optimal transport and non-imaging optics
 - 1. Light Energy Conservation equation
 - 2. Generic and parameter-free algorithm
 - 3. Numerical results

Input:

▶ A prob. measure on a triangulation X in \mathbb{R}^d , $\mu = \sum_{\sigma} \mu_{\sigma}$, where $\sigma = \text{triangle}$

A prob. measure on a point cloud $Y \subset \mathbb{R}^d$, $\nu = \sum_{i=1}^N \nu_i \delta_{y_i}$

Input:

- A prob. measure on a triangulation X in \mathbb{R}^d , $\mu = \sum_{\sigma} \mu_{\sigma}$, where $\sigma = \text{triangle}$
- A prob. measure on a point cloud $Y \subset \mathbb{R}^d$, $\nu = \sum_{i=1}^N \nu_i \delta_{y_i}$

Output:

• Transport plan between μ and ν for *quadratic* cost \rightsquigarrow Laguerre cells $(Lag_i(\psi))_{1 \le i \le N}$

Input:

- ▶ A prob. measure on a triangulation X in \mathbb{R}^d , $\mu = \sum_{\sigma} \mu_{\sigma}$, where $\sigma = \text{triangle}$
- A prob. measure on a point cloud $Y \subset \mathbb{R}^d$, $\nu = \sum_{i=1}^N \nu_i \delta_{y_i}$

Output:

• Transport plan between μ and ν for *quadratic* cost \rightsquigarrow Laguerre cells $(\text{Lag}_i(\psi))_{1 \le i \le N}$

Question: can we use still use the Newton method to solve OT between μ and ν ?

Input:

- ▶ A prob. measure on a triangulation X in \mathbb{R}^d , $\mu = \sum_{\sigma} \mu_{\sigma}$, where $\sigma = \text{triangle}$
- A prob. measure on a point cloud $Y \subset \mathbb{R}^d$, $\nu = \sum_{i=1}^N \nu_i \delta_{y_i}$

Output:

► Transport plan between μ and ν for *quadratic* cost \rightsquigarrow Laguerre cells $(Lag_i(\psi))_{1 \le i \le N}$

Question: can we use still use the Newton method to solve OT between μ and ν ?

- \blacktriangleright μ not AC anymore \implies **Brenier's theorem does not apply anymore!**
- \implies Optimal transport may not be unique or even exists

Input:

- ▶ A prob. measure on a triangulation X in \mathbb{R}^d , $\mu = \sum_{\sigma} \mu_{\sigma}$, where $\sigma = \text{triangle}$
- A prob. measure on a point cloud $Y \subset \mathbb{R}^d$, $\nu = \sum_{i=1}^N \nu_i \delta_{y_i}$

Output:

► Transport plan between μ and ν for *quadratic* cost \rightsquigarrow Laguerre cells $(Lag_i(\psi))_{1 \le i \le N}$

Question: can we use still use the Newton method to solve OT between μ and ν ?

- \blacktriangleright μ not AC anymore \implies **Brenier's theorem does not apply anymore!**
- \implies Optimal transport may not be unique or even exists

Solution: use a *genericity* assumption on the point cloud Y and *regularity* on μ

[Mérigot, M., Thibert, SIIMS '18]

Theorem:

Assume μ is a regular simplicial measure

 y_1, \cdots, y_N are in generic position

Then the damped Newton method converges with linear rate globally i.e.

 $||G(\psi^k) - \nu|| \le (1 - \frac{\tau^*}{2})^k ||G(\psi^0) - \nu||$ where $\tau^* \in]0, 1]$

Genericity position: example of non-generic case, edge of $\sigma \perp (y_i y_j)$

 $\frac{\partial G_i}{\partial \psi_i}(\psi^1) \propto \mu(\partial \operatorname{Lag}_i(\psi^1) \cap \sigma) > 0$

Genericity position: example of non-generic case, edge of $\sigma \perp (y_i y_j)$

$$\begin{split} & \frac{\partial G_i}{\partial \psi_j}(\psi^2) \propto \mu(\partial \operatorname{Lag}_i(\psi^2) \cap \sigma) = 0 \\ & \Longrightarrow \ G \ \mathsf{not} \ \mathcal{C}^1 \end{split}$$

Optimal transport for a **uniform** source

Initial: ψ^0

Optimal transport for a **uniform** source

Initial: ψ^0

Final

16 - 2

Optimal quantization of a probability measure on a triangulated surface

 \blacktriangleright Remeshing with respect to a density μ (uniform, mean curvature)

Optimal quantization of a probability measure on a triangulated surface

 \blacktriangleright Remeshing with respect to a density μ (uniform, mean curvature)

16 - 4

<u>Overview</u>

A. Optimal transport

- 1. Generalities on optimal transport
- 2. Semi-discrete optimal transport
- 3. OT between a triangulation and a point cloud
- B. Optimal transport and non-imaging optics
 - 1. Light Energy Conservation equation
 - 2. Generic and parameter-free algorithm
 - 3. Numerical results

18 - 4

Input: collimated light source μ and target light **at infinity** $\nu = \sum_{i} \nu_i \delta_{y_i}$ **Goal:** design a **convex** mirror \mathcal{R} that sends μ to ν

Input: collimated light source μ and target light **at infinity** $\nu = \sum_{i} \nu_i \delta_{y_i}$ **Goal:** design a **convex** mirror \mathcal{R} that sends μ to ν

1. Discretization: μ supported on a triangulation X and ν on a point cloud Y

Input: collimated light source μ and target light **at infinity** $\nu = \sum_{i} \nu_i \delta_{y_i}$ **Goal:** design a **convex** mirror \mathcal{R} that sends μ to ν

2. \mathcal{R} is convex and can be parametrized by $\mathcal{R}_{\psi}(x) = (x, \max_{1 \le i \le N} \langle x | p_i \rangle - \psi_i)$

Input: collimated light source μ and target light **at infinity** $\nu = \sum_{i} \nu_i \delta_{y_i}$ **Goal:** design a **convex** mirror \mathcal{R} that sends μ to ν

3. $V_i(\psi) = \{x \in X \mid x \text{ reflected towards } y_i\} \text{ and } G_i(\psi) = \mu(V_i(\psi))$

Input: collimated light source μ and target light **at infinity** $\nu = \sum_{i} \nu_i \delta_{y_i}$ **Goal:** design a **convex** mirror \mathcal{R} that sends μ to ν

3. $V_i(\psi) = \{x \in X \mid x \text{ reflected towards } y_i\} \text{ and } G_i(\psi) = \mu(V_i(\psi))$

Input: collimated light source μ and target light **at infinity** $\nu = \sum_{i} \nu_i \delta_{y_i}$ **Goal:** design a **convex** mirror \mathcal{R} that sends μ to ν

Light Energy Conservation equation

Goal: solve (LEC) where

- \blacktriangleright V_i(ψ) is a Laguerre cell \implies optimal transport problem for some cost c
- ▶ $X \subset \mathbb{R}^2 \times \{0\}$ for collimated lights and $X \subset \mathbb{S}^2$ for point lights
- \blacktriangleright \mathcal{R}_{ψ} is a parametrization of the component
 - piecewise affine function for mirror & lens / collimated light
 - pieces of paraboloids for mirror / point light
 - **pieces of ellipsoids** for lens / point light

 ${\sf Mirror}\ /\ {\sf collimated}\ {\sf light}$

Mirror / point light

<u>Overview</u>

A. Optimal transport

- 1. Generalities on optimal transport
- 2. Semi-discrete optimal transport
- 3. OT between a triangulation and a point cloud
- B. Optimal transport and non-imaging optics
 - 1. Light Energy Conservation equation
 - 2. Generic and parameter-free algorithm
 - 3. Numerical results

Algorithm: Mirror / lens construction

A light source X, μ Input A target light Y, ν A tolerance $\eta > 0$ A parametrization function $\psi \mapsto \mathcal{R}_{\psi}$ A transformation function $\tau : Lag \mapsto X \cap Pow$

A triangulation \mathcal{R}_T of a mirror or lens \mathcal{R} Output

depends on the optical design problem

Algorithm: Mirror / lens construction

InputA light source X, μ
A target light Y, ν depends on the optical design problemA tolerance $\eta > 0$ A parametrization function $\psi \mapsto \mathcal{R}_{\psi}$ A transformation function $\tau : \text{Lag} \mapsto X \cap \text{Pow}$

- **Output** A triangulation \mathcal{R}_T of a mirror or lens \mathcal{R}
- **Step 1** Initialization

 $\psi^0 \leftarrow \texttt{INITIAL}_{\texttt{WEIGHTS}}(Y)$ i.e. $\psi^0 \in E_{\varepsilon}$

Algorithm: Mirror / lens construction

- **Output** A triangulation \mathcal{R}_T of a mirror or lens \mathcal{R}
- **Step 1** Initialization $\psi^0 \leftarrow \text{INITIAL}_{\text{WEIGHTS}}(Y)$ i.e. $\psi^0 \in E_{\varepsilon}$
- **Step 2** Solve $G(\psi) = \sigma$

 $\psi \leftarrow \texttt{DAMPED_NEWTON}(X, \mu, Y, \nu, \psi^0, \eta, \tau)$

Algorithm: Mirror / lens construction

- **Output** A triangulation \mathcal{R}_T of a mirror or lens \mathcal{R}
- **Step 2** Solve $G(\psi) = \sigma$

 $\psi \leftarrow \texttt{DAMPED_NEWTON}(X, \mu, Y, \nu, \psi^0, \eta, \tau)$

Step 3 Construct a triangulation \mathcal{R}_T of \mathcal{R}

 $\mathcal{R}_T \leftarrow \text{SURFACE}_\text{CONSTRUCTION}(\psi, \mathcal{R}_{\psi})$
<u>Overview</u>

A. Optimal transport

- 1. Generalities on optimal transport
- 2. Semi-discrete optimal transport
- 3. OT between a triangulation and a point cloud
- B. Optimal transport and non-imaging optics
 - 1. Light Energy Conservation equation
 - 2. Generic and parameter-free algorithm
 - 3. Numerical results

Numerical results: mirror design / collimated light

Numerical results: mirror design / collimated light

Laguerre diagram and mesh

Reflected image

Numerical results: other settings

Numerical results: physical prototypes

Summary & Perspectives

- Optimal transport can be used to unify non-imaging optics problems
- Optimal transport can be solved very efficiently using Newton algorithm

Summary & Perspectives

- Optimal transport can be used to unify non-imaging optics problems
- Optimal transport can be solved very efficiently using Newton algorithm

Thank you for your attention